User’s Guide Volume 1:

Using SQL Anywhere

Sybase SQL Anywhere

A System 11 Server Product

Notice of Copyright

© Copyright 1995, by Sybase, Inc.

All rights reserved. No part of this publication may be reproduced or used in
any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping or information storage and retrieval
systems—without written permission of Sybase, Inc.

Disclaimer

Sybase (Sybase, Inc. and all of its subsidiaries) makes no representation or
warranty with respect to the adequacy of this documentation or the programs
which it describes for any particular purpose or with respect to its adequacy to
produce any particular result. In no event shall Sybase, its employees, its
contractors or the authors of this documentation be liable for special, direct,
indirect or consequential damages, losses, costs, charges, claims, demands, or
claim for lost profits, fees or expenses of any nature or kind.

ISBN 1-55094-110-0

Printed in the United States of America

Preface

Developed on personal computers for personal computers, SQL Anywhere is a
full-featured transaction-processing SQL database management system which
has excellent performance while requiring less resources (memory space, disk
space, and CPU speed) than other database management systems.

SQL Anywhere can be used as a standalone database management system or as a
network database server in a client/server environment. The SQL Anywhere
standalone engine is available for DOS, Windows 3.x, OS/2, Windows 95, and
Windows NT. The SQL Anywhere network server is available for all of these
operating systems as well as QNX, and as a NetWare Loadable Module (NLM).
Database files are compatible between versions and across all operating systems.

SQL Anywhere is a fast and efficient database for many environments, from
notebook computers to servers supporting large numbers of concurrent users.
It’s a flexible and scalable solution for today’s diverse needs.

With an efficient ODBC driver and full ODBC 2.1 level 2 support, as well as
other interfaces, SQL Anywhere is also an ideal database for developers.
Whether you are using C, PowerBuilder, or other application development tools,
and whether you are developing single-user or client/server applications, SQL
Anywhere provides you with all the capabilities you expect from a full SQL
database server.

Trademarks

Borland C++, dBASE and Turbo C are trademarks of Borland International.

Excel, Microsoft, Microsoft C, Visual C++, Visual Basic, Access, Microsoft
Mail, Microsoft Word, and Windows are trademarks of Microsoft Corp.

IBM, Lotus, 0S/2, C Set ++, REXX and Presentation Manager are
trademarks of International Business Machines Corp.

Microsoft, Windows, Windows 95, and Windows NT are trademarks of
Microsoft Corp.

NetWare, NetWare 386, and Novell are trademarks of Novell Inc.
CompuServe is a trademark of CompuServe, Inc.
QNX is a trademark of QNX Software Systems Ltd.

Other company and product names used herein may be the trademarks or
registered trademarks of their respective owners.

Sybase trademarks

The following are trademarks or registered trademarks of Sybase, Inc, and its
subsidiaries:

InfoMaker, Open Server, PowerBuilder, Replication Server, SQL
Anywhere, SQL Server, Transact-SQL, Watcom VX-REXX, Watcom C,
Watcom SQL.

Portions of the Windows SQL Anywhere Client and Windows Network
Database Server software Copyright © 1983-1993 Novell, Inc. All Rights
Reserved.

Table of Contents

Preface ..t

1 How to Use This Book
1.1 About this manual
1.2 Graphic iconscccevvueunne
1.3 Product installation

1.4 Upgrading databases to SQL Anywhere 5.0ccccceevinenrnernneccnreneceerecncenens

1.5 Contact information

2 New Features in SQL Anywhere 5.

2.1 What’s in a name?
2.2 New features overview

O s

2.3 New features in the Watcom-SQL 1anguageccocevvevievreniieenesienccenieneeseesenens

2.4 New sample database

3 An Overview of SQL Anywhere ..

3.1 The SQL Anywhere engine and the SQL Anywhere Serverc.ccoceeeeerrreeerueenne.
3.2 Running SQL Anywhere on a single COMPULETccccoveevererceeeerreeserenresreessaenneens
3.3 Running SQL Anywhere on @ NEtWOIKcc.ccceceeveveeerircnreneenterenensenseniesessesseseaesens
3.4 Running mixed operating systems on a single COMPULETcceeevererrererererenennes
3.5 SQL Anywhere programming interfacesc.ccocceverrerrerreeneriesnerienresseessesieeneenne
3.6 The SQL ANYWhETIe PrOZTAIMSccceceevirirerrersrerenereriesesesssessesssessessessasssessasssnanns

TUtorials .ccocevveeeveeeeeeereeee e

4 Managing Databases With SQL Centralcc.coccevuerirenenenieniensieneneneensesesesssessaesns
4.1 SQL Central and database managementcoceeceeveererveererresrerssereensensessesssesssenas
4.2 Navigating the main SQL Central Windowc.ccccceceveeurerenercnncnnercncnecerenenes

4.3 Adding a table to a database

4.4 Viewing and editing PrOCEAUIEScccvvererrireriererenssrrsueieeessessessessssessesesscessessens

4.5 Managing users and groups .

4.6 Backing up a database using SQL Centralccocoeceeeeereereereriereruessenseseeseenens
4.7 Using the SQL Central onling Belpccceeeververieereecininnereenesenrsesssresesneeessessenes

5 Using ISQL ..c.cccovverviiininnicieneennens

5.1 The SQL Anywhere program roUpccceceeeceeeererereeserserseseesesessensesassessessessenes
5.2 Starting the SQL ANyWhere SOftWarecceeveeerererrereeecreseeneseseesseeeseeseeseesnens
5.3 Connecting to the sample database from ISQL.ccccoceereereerreiecenreeienreceseerneeenne

5.4 Obtaining help from ISQL ...

5.5 The ISQL command window

B VA N S

S 00 NN

13

14
18
21
23
24

31

33
34
34
38
43
45
48
49

53
54
54
55
56
56

Table of Contents

5.6 Leaving ISQL ..ottt
5.7 Displaying data in ISQLccccoceeiiiiiniiiiciiicccc e
5.8 Command recall in ISQLcoouiiiiieiierieriereerieestereeeee et eesreeste et e stessesseaasseesaesenenne
5.9 FUNCHON KEYS ..oviivieiiriieieieienineneeetetee ettt enesacsseesaessessenessessnessessessessens
5.10 Aborting an ISQL coOmMMANAccccvveiiinrecininiiincniiierceeeeses e
5.11 WHAL DIEXL? ..eeiiniieirieereetenieet et e sttt et et e et e e et ese s et e sae e e e seeseesseeasesaban

6 Using ISQL for DOS, QNX, OF NEtWALEccccvvuruiierierinreririecetireninnesesessesesesssscssssenes
6.1 TULOTIAL FIlES ...eevvrieveueiriiieieie ettt ettt et se ettt bea e ese e senes
6.2 Starting the SQL Anywhere SOftWarec..ccccceveriiiicieeiinnencnencnreneeseesesenennens
6.3 Connecting to the sample database from ISQLcccccoeviirviinniiininernceeneeeieeeee
6.4 ISQL mMENU SEIECHONcovvieieiiiiirieeiieeieerteeete ettt cesare e st e ssne e s e saeesneesennes

L8 N Lol O TQNT
0.0 UDAIIE NCLIP LIOMHL IOWJLL wiciiiiiiiiteiieiiiiiiiiiiitiiontioitioitttontiettotanttotscnsssesnntaccscccscccss

6.6 The ISQL command WiNAOWcceccerriinreriueeneenieenreniessseesseesseeeesaesssesssesssesssens
6.7 Leaving ISQLc.coiiiiirireererietntieenretcctete et cr et sss e ae st ssa s e
6.8 Displaying data in ISQLcccccoeeiiriiiiiiiiiircentcccc e
6.9 Command window keys in ISQLccccccvieiniininiiieniniininineneeeeencseseeeinns
6.10 Scrolling the data WindOWccvriviiiniiiiiicni s
6.11 Command recall in ISQLcccoooiiiiiiiieeneee ettt e e ee e sseeesaenne
6.12 FUNCHON KEYS ...cooviiiiicriniiiieienie ittt sttt nessssn e s s sesns st esansnns
6.13 Aborting an ISQL cOmMMANdcoceevieueriiceriniinieinienietiecenesr et eenens
6.14 WHAt DEXLT ...oovuiiiiiinieeieeietert e e steeee et s e bt e sbe e sr e sae e st s e e e s be st ese e e st seneesseessbesanas

7 Selecting Data From Database Tablescccccvuiviiririnreniinininineniiincenenneseessesneninens
7.1 Looking at the information in a tablecccccovceeviiiiiiiiiineniinncrccccrecee
7.2 Ordering QUETY TESULEScoeirereereririereniiriceniceeteeeresae e sre e sesassbes s saenas
7.3 Selecting columns from a tablec.coveviinuiiniiiiiiniini e
7.4 Selecting rows from a tableccccovviviiiiniiiiiii e
7.5 Comparing dates in QUETIESccccererireiiiniiiiiniiniininrcsrcnncencsreresseesaeesesssesasessenes
7.6 Compound search conditions in the WHERE clauseccocceccvveivinnincninninnnn.
7.7 Pattern matching in search conditionscceceeveriieriereriieneneiseieniecniennesnneneeens
7.8 Matching rows by SOUNAc.ccueuermeuiiiiiiiiicicieesecte e
7.9 Short cuts for typing search CONitioNSc.cccceeeeriviinincriiinicsincceeneeeieseeaene

8 JOINING TADIEScuverueiririririiererretetrieeet ettt et et s et see s e e sresnnesseesseesasssssnsensen
8.1 Displaying a list Of tablescccceceiviiviiiriniiiiiiinirce s
8.2 Joining tables with the cross productccccveviiiiininiiniiiicninnieen
8.3 RESHICHNE @ JOIN ..cucueveuenieieiiciiitiien ittt ebesesss s b s s nenens
8.4 How tables are relatedcocooeveiriiniiciniinniiieneeectecteetcete st e s sssesseesnsanes
8.5 JOIN OPETALOTSecueeiriiieeeienieieeeiete ittt sttt st a e saeae e et sae e besnnssaenes

vi

Table of Contents

9 Obtaining AgEregate Datacccoevevirueiierecrieereeiee ettt eae e sae v snennes 91
9.1 A first look at aggregate fUNCtIONScc.ccevvevuereererreenrentenreneereeeeeeeeseensesseesseeseens 92
9.2 Using aggregate functions to obtain grouped datacceceeeeerreenreeerereereerennen 92
9.3 RESIIICHNZ BIOUPScovvemeieueinienirineetesererteseeseseteseesestetssestesessessssassssessessessessesseses 94

10 Updating the Databasecccccceevererrirerierieneienienenenieessessessessessesseesessessesseessessesssasssn 97
10.1 Adding roOwS t0 @ taDIEcccciiuiiiieiieieieierieteerre ettt aenaas 98
10.2 Modifying rows in @ tableccccceeriiirieceeienieeeeeereseee e reeeessesaesensasnens 98
10.3 Canceling ChANEZEScccceveerereriierineaninreiaesaestesieesaesaessessessessessassessessessessssnsasssassans 99
10.4 Making changes Permanentcceeeeeereeruesreseereereereessessessessessessessessaessssssesses 100
10.5 Deleting rowsc.ccccevueunenee. 100
10.6 Validity checking 101

11 INtroducCtion t0 VIBWSc.ccceveuiiereierinieinreninirieteesessestsssssesassesseessessssessssessessessessanssennes 105
11.1 Defilling @ VIEW ...coveviiiriiiiiitecterieeerenes et e stes e saes e s e e s e sae st estasnessasaessesnsesnsansans 106
11.2 USIng Views fOr SECUTILY ...c.ccceveierreriiiiirieiesteste ettt eesee st saesae e e sase e saas 107

12 Introduction t0 SUDQUETIESc..cccvereririeeriiirintenieteestente st eeereseesesessassesseseesessesseesenss 109
12.1 Preparing tO USE SUDQUETIESceceevurerurueseeruesarseeieseessessensessessessessessesssessasssanses 110
12.2 A SIMPIE SUDQUETYeoviuiiiieiiiienee ittt srestee ettt st e ae s e ese s saeese s e e sassasesanan 110
12.3 Comparisons uSing SUDQUETIEScccererrerrerrerereerueiesseserenseseesesssessessssessesssesenns 112
12.4 Using subqueries instead Of JOINScccvvirviererenierienieneeseseestentesreseeesesaesnennes 114

13 Command FHIESccoiiiiiininiiiiniiiiir ettt sttt se s a st a e s nens 117
13.1 Entering multiple statements in the ISQL Command windowcccceceeenenee. 118
13.2 Saving statements as command fileScc.ccccceveevererienininenieicnercneee e 118
13.3 Command files with PArameterscccecevuerrererierieereerueneesrenseniessessesseseessesssenees 119

14 SPecial TabDIESc.cccciiiviiiiiiiieiiiii ettt ettt ettt st 121
14.1 The SYSCATALOG abIec.ccvvrureiririerireeinieieiniereenteseessssssssesensasesassessesesenne 122
14.2 The SYSCOLUMNS tablecceceoiveeririrreinrenterierenseierenseeeseseesessssessesesssssessessennes 122
14.3 Other SPecial tablEsccccccivririiriininineneeescte et re et ere s e e saeesesaeeseens 123

Using SQL ANYWRETEcoiiiiiiiiiniiiiiiiicteect ettt ettt et ba e s 125

15 Connecting to @ databasecceeiviriiuiiinininieieeneretrrtsee e see st e e sesse s e saesenens 127
15.1 CONNECHION OVETVIEWeveureienirrcrieiinieterteseesseeeessensassassessessessasssesssseessessenssesenses 128
15.2 Connecting from the SQL Anywhere utilitiescoceoverererierereeeceereesreseeerennens 132
15.3 Connecting from an ODBC-enabled applicationcc.c.cecveerrervnrenrereerereesennens 133

vii

Table of Contents

16 Designing Your Databasecceeveeuecercniniininiiinininciiiiiicsieseseeensesesesessessssenes 143
16.1 Relational database CONCEPLSc.ccerivririnuiniiiiiniininiiiiincie e 144
16.2 Planning the databasecccccceieiiniiniiiinciieineicee e 146
16.3 The deSiZN PIOCESS ...ccveveerrerrirrereeererteniereeteteteeeeresseestesreesessensensessosssasessessessene 148
16.4 Designing the database table Propertiesccocoeivniririncrinneceeseeesiaeenes 160

17 Working With Database ObBJECEScccciviiriiiiniiniininininiciiiiincetesessesceeaeseenes 163
17.1 Using SQL Central to work with database ObJECtScceeuevuiiiiiiinineiiiicnieinnns 164
17.2 Using ISQL to work with database ObJECtScccceevuiiiiirincniiiininiiccienne 164
17.3 Working with databasescccceceiiniiiiiniiiiiiiiicc e 165
17.4 Working With tablescceeveveeeieniininienecinieeiieeeiese e ssseseens 169
17.5 Working With VIEWS ...c.ccccevirmivininiiiiiiiiiiiitci e 175
17.6 Working With INAEXES ..c..eceevererrenieriiniiiiiiiiinecerccte e 180

18 Ensuring Data INEGIILYccccoveiiiiiniiiiniiniicecicie ettt 183
18.1 Data INtEGIItY OVEIVIEWcucevrveuiruiriiriiiiciiiiiciei et sse b s sa s sas s seas 184
18.2 Using column defaultsc..ceccovivviruiriiiiiiininiiiiiiciiicicicieeeeeseese s 187
18.3 Using table and column CONSITAINESccoveeriiiiiniiiiiiiieiiecniene e 191
18.4 Enforcing entity and referential integritycccoceveiviveniiininniiineiiceiennen 195
18.5 Integrity rules in the system tablesccccoviiviiniiiniiiniiiiiiiiiicce e 199

19 Using Transactions and LOCKScccecerviriniiiiiiniiniiiiiciiiccsccce et 201
19.1 An overview Of transactionscccoevevieviiriiiniiiiiniiiceieer et 202
19.2 HOW 10CKINE WOTKScvecvreeuirieriiiiniiiniiisiiisiistesiesieessesiesisssesesssssssessesssssssessensenns 204
19.3 Isolation levels and CONSISLENCYcovveeuerrirririuiniienrieniriiieiniteeieiesneeseesieesaeenens 205
19.4 How SQL Anywhere handles locking conflictscccccceumviiiiucininrccnnennicnenn, 207
19.5 Choosing an is0lation 1eVelccccvieevniivieiineniiniiiiince e 209
19.6 Savepoints Within tranSaACtIONSccccecevverrereireeseeneniiniineneeteierese e enesaesnes 210
19.7 Particular CONCUITENCY ISSUEScecrirrerrrvirmirriiririestieinienseesreiessessesssessessessesssass 211
19.8 Transactions and portable COMPULELScccceirveerueniiiiniininiieieiie e 213

20 Using Procedures, Triggers, and Batchescccocevevienieviininiennniniiininnnieencnnene 215
20.1 Procedure and trigZer OVEIVIEWccccvvviviinuiiniiinniniiniiinienie et ennesnes 216
20.2 Benefits of procedures and tigEETScocveriiiiiiieiiineeeiicetete e 216
20.3 Introduction to ProcedUIEScevviiveriiruiinniiiinieninriiesen e eerens 217
20.4 Introduction to user-defined funCtionscc.cecceceevercrieeniincninnniineneeennes 222
20.5 Introduction 0 trZEETSccoviiiruiriiimiiiriniciteteete et aebens 224
20.6 Introduction t0 BAtCHEScccoeivievniiirininieniiiercreetre et eaeeaeaens 228
20.7 CONLIOl SLALEMENLScovereerreeniereciriiiiitesteeereesreesre st et eseesssesssesasssssasssesssesssensons 229
20.8 The structure of procedures and trigEETSccocvvivvruiviniiuiriiririnnieseiieieeesesenens 232
20.9 Returning results from proCedurescocviiiviiniiniinieieiieniincncineneeeeneeeees 235

Table of Contents

20.10 Using cursors in procedures and triggIScc.ceoeveererrererierseeeeseeseersesesseesnenne 239
20.11 Errors and warnings in procedures and triggersc.cccevervienevirrcnrereninennennes 245
20.12 Using the EXECUTE IMMEDIATE statement in procedurescc.cooeeeene. 252
20.13 Transactions and savepoints in procedures and triggersccecvvevrervvreecrunnnee 252
20.14 Some hints for writing proceduresc.coceevveeevereireecrenecenencneeneeiesesaenes 253
20.15 Statements allowed in DAtChESc.ccevieeriierirnreeeninteieeeceeeserc et 255
20.16 Calling external libraries from stored proceduresco.cecceveeverreeruecreseerennuenne 256
21 Monitoring and Improving Performanceocceceevierenreenienenienenenecenceenceereneeenee 261
21.1 Factors affecting database performancecocceccveerceneeiennenseireeseeseriensesneesenne 262
21.2 Using keys to improve qUery performancecccceeerveereereeseesueseessessesserseessensenne 263
21.3 Using indexes to improve query performancec.cco.ceeeevrerenrereesesnesenessnene 266
21.4 Search strategies for queries from more than one tableccccecveveicivcnivinncnenne 268
21.5 SOrting QUETY TESULLS ...ceccvvereerireriirieriiereesiereeesee e s e se st st s e sse st e e seesnessesnnesaesns 270
21.6 Temporary tables used in QUETY PIOCESSINGcocevererrererirmenirererenrensesmseesaesaesene 271
21.7 How the OPUITIZET WOTKScvccerirrierienireeenrienteneeneesressessesssessneeseesssesseesssesssens 272
21.8 Monitoring database performance ... 274
22 Database COLLAtiONScccvivuiviminieniiiinieiieieeieetesressesee st e ssessessessessessesssessessesssensens 287
22.1 COllation OVEIVIEW ...ccceivvriirienriiiieririetecentessessestesesaessessessessessessesssessensessesssones 288
22.2 Support for multi-byte character SEtScccecerreererrerrrenrenrenrerrenneeneeseeseeresneeneennes 291
22.3 ChooSINg @ ChAraCter SEtccvuerieirieerineniineenrenreere ettt b ssesse e e saeeneens 292
22.4 Creating custom COLLAtIONScoevirvirereeiienieneninniesreseeesesestetseessseessesesssesee 294
22.5 The collation file fOrMALccccoevemmirierenienereertererercee sttt eesresseseesrenne 294
23 Importing and EXPorting DAtaccccceevceeueenenienenirerenencnteesteeeseseessenesessessessenens 299
23.1 Import and eXPOIt OVEIVIEWcccueueeuiicuiniiiiiiiiiniiisensieisssesssese s sasssesassssssas 300
23.2 Exporting data from a databaseccececviviiiniininniiinine 301
23.3 Importing data into & databasececeeveriierierierenenicnennenreereerereseesre e eesreeeen 305
23.4 Tuning bulk OPErationsccceieviiiiiniiiiie s 307
24 Managing User IDS and PermiSSIONScc.cccceerirvereneeresesseneeereesessessesessenesessessessesens 309
24.1 An overview of database PErmiSSIONScceevererrererrererrereeenreressereesesneseesseesnes 310
24.2 Managing individual user IDs and permissionscccecceveererererererrereeneessene 313
24.3 Managing SIOUDSccceevereererrerierisiesseniesessesseeseesesssessesseessesseseseetessensessessessnensesses 318
24.4 Database object names and Prefixescccocevvevveererriinieneenenenenenenessesseesessnnne 323
24.5 Using views and procedures for €Xtra SECUIILYc.ceoceererererrerrereeenesenecresnennns 325
24.6 How SQL Anywhere assesses USET PEITISSIONScocuerrverreerrrererreensuesseeeneessseesess 327
24.7 Users and permissions in the System tablesc..coccevevererierenvenenenscsressuesennens 328
25 Backup and Data RECOVETYcooiiiiiiiiiiieenceicceteeeccve e 331

Table of Contents

25.1 System and media failurescoccovivnmiiienininencniiencreeeeee e 332
25.2 The SQL ANYWHETE LOZS ..cuveuiruereiriiinieniententeetsteneeestessessestestesaeseeseeneensessesaesses 332
25.3 Using a transaction 10g MUITOTcccoevvuiuiniiieinuiiniiininncinieeissssesesssensssssssesenes 336
25.4 Backing up your databasecccceeeevmiiniiiniiniiniiiii e 340
25.5 Recovery from system failtrec..cccococeviveniiniinnininenentnenccresesneseeessesneeeens 343
25.6 Recovery from media failurecccovveiiiiiiiniinniiiniiniicncenecncnecnnennens 344
26 Introduction to SQL Remote Replicationcccccvvviviiiiiniiiniiiinininiinicncieieinns 349
26.1 Introduction to data TEPLCAtIONc.cevcuceeueurueueremeieieieietreeesneestseeseesssesesssssesns © 350
26.2 SQL REMOLE CONCEPLSccrveuiriiiniiriritiinsiitiicreie st ss s s eassaene 351
26.3 SQL ReMOLE fEAMUTESeeervrrrrierereneeiiereiteeeieeseeeeeteeeeeesssaeesbeesseessseessssessnnees 356
26.4 Message systems supported by SQL Remotecoveveiiiiiiiniiininiccnnenncnnes 357
26.5 Tutorial: setting up SQL Remote using SQL Centralcccccoceverveeveevurneerienuenne 359
26.6 Set up the consolidated database in SQL Centralc.ccccevervuevenverneenienensrennnnnenne 362
26.7 Set up the remote databasec..ccceevreeviiniiiniiinreniiieieererrece e secseses 365
26.8 Tutorial: setting up SQL Remote using ISQL and DBXTRACT 366
26.9 Set up the consolidated databaseccccecveveeviiviininiininnnicnee 368
26.10 Set up the remote databaseccoveveeverirniiicrniinenentereecntetereseeseesseeaenes 371
26.11 Start replicating data 373
26.12 A sample publication 375
26.13 Some sample SQL REMOLE SEUPSeeevueruerruerrerrrrenreeererieeneeeesseessesssessseesseens 375
27 SQL Remote AdminiStrationcccceeceeesseeereerenseeenseessseeessenessseesssseesseessneeseseessssecesseens 379
27.1 SQL Remote adminiStration OVEIVIEWcceeceeevuiererrierseeereensessreessessesssnesssesssees 380
27.2 Adding SQL Remote MESSAZE LYPES ..veververrernrirriiiesiiiaiiiisiesieiressesseesseseesesseeseens 381
27.3 Managing SQL Remote permiSSionsccccveveeucerernerereneneeerisessesmssessessesneneas 382
27.4 Setting Up PUDLICALIONScoveeirieeiriiniiiinitiitiir ettt care s esab s sasesanseas 388
27.5 Designing PUDLICAtIONSccveiererverrerrererreereerteteseeneeseeeessessessessessessessesseessessesses 392
27.6 Setting Up SUDSCIIPLIONSccceevvereeriiriineiniiiiitiienensensessestssaesestesesaessessssssessesnes 398
27.7 Synchronizing databasesccceceeeeerierrueesersieeinierseenesseesseesseseseseessesseesssesnes 398
27.8 How statements are replicated by SQL Remotecc.coceeveevercreveeccncnecsiencnenne 403
27.9 Managing a running SQL Remote Setup: OVEIVIEWccccevvverereeniinsiennnecssuennens 408
27.10 Running the SQL Remote Message AZentccvvevenncniiniincneiinensensenienens 409
27.11 The SQL Remote message tracking SyStemcccceueeeeermiriivinineseniinsiensesnenens 411
27.12 Transaction log and backup management for SQL Remotecccccvveuernccuenne. 413
27.13 Error reporting and conflict resolution in SQL Remoteccoeveveeivvierererennnnn. 415
27.14 Using passthrough mode for adminiStrationceccecevveeveerinensiinunnnenueescnnnns 420
28 Running programs as Windows NT SEIVICEScccocrievrirerseisiereneninseesinensessnenneenees 423
28.1 Introduction to Windows NT SEIVICEScccceiiriiruirvirenenrerneinisisiciiscsienesesnenens 424
28.2 The SQL Anywhere Service Managerccccvueeerveeenuereenencneeineessiesseesssseenens 425

Table of Contents

28.3 Adding a new SQL ANyWhEre SEIrviCec..ccovevreereresrerereeerenseeereeeensssereseenenns 426
28.4 Configuring a SQL ANYWHETE SEIVICE ...cecevvrrivrrreieereriereiereeeresessesnssessesssessessesens 427
28.5 Starting and StOPPING SEIVICESceccerereierrrreeresrereertesseerereeseeseesessessesessesessessensons 430
28.6 Removing a SQL ANYWHETIE SETVICE ...cccveveuerieriereereeeieteetereeteerest e eaeeseeaeeneen 431
28.7 Monitoring a SQL Anywhere network server Servicec.cococcvevveeirirircoceinnnnn. 432
28.8 The Windows NT Control Panel Service Managerccoceceeeeereeeenveenereenenean 433
Transact-SQL COmMPAtiDILILYc.cccvuverirueeeiirinirieieieeie et aese s e esesesseseseenes 435
29 Using Transact-SQL with SQL ANYWHETEc.oovviviiereiineieeeereeeeeeeeeeeeeeeeeseseeeeeeas 437
29.1 An overview of SQL Anywhere support for Transact-SQLc.ccccevverrrerrennnne. 438
29.2 SQL Server and SQL Anywhere architeCturescoeveeeveeereeereeververeererreereenens 440
29.3 General guidelines for writing portable SQLccovvviiviiriniieiieereesreseeeenene 443
29.4 Configuring SQL Anywhere for Transact-SQL compatibilityccceeueunnen. 444
29.5 Using compatible data tyPEScccccveirerrerecrerereseereneereeeressereseesessssescssesessssssseneas 447
29.6 Local and global Variablescecueveueveeuereeierieieereereeeeeeneeeeeseeeeeeesseseeeseseseeeenes 454
29.7 Building compatible EXPIESSIONSccccvverirerrrerereeneraeinieresssnsssesesesesesssesesesenes 459
29.8 Using compatible fUNCHONSc.c.cceveveivirriirrereierereeneseseseeeseeseresenesesssssssessssenene 462
29.9 Building compatible search conditionsc.eceeeevevveereerereerereerereeneeissesesesnens 471
29.10 Other 1anguage ElEmENtSceerceerirreererreerieereessesesseesseressesessessssesesesens 475
29.11 Transact-SQL statement refErENCEcovevvirireeveirrireieireeetesresseseeeeesseseeeens 476
29.12 Compatible system catalog informationccceveeeerereererenrereerereneereeerenenenne 491
29.13 SQL Server system and catalog ProCedUIEScceevverererrererrerereereseeneeesessenenne 493
29.14 Implicit data type CONVEISIONccccverirerrerrereereereerensenseeseeessesessessssessessensesssssones 495

30 Transact-SQL Procedure Languagec.cccccceveeeererersiereeereresenesesssenesssesesssssesensnnes 497
30.1 Transact-SQL procedure 1anguage OVEIVIEWccoveevveereireenieiieirenseeseessesseeeneens 498
30.2 Automatic translation of SQL StatemeNntsccceevevvereeereereeereeeeereesresseesseesaeens 499
30.3 Transact-SQL stored procedure OVEIVIEWcoceeeereeeereneereneerereerereieneeereseneene 500
30.4 Transact-SQL triZZEr OVETVIEWcceeviieeeerivirirerenrereseeseteseseesesssssseesesessesesseseenens 501
30.5 Transact-SQL DatCh OVEIVIEWc.ccceuiriivieeiiiiiieeeiceeccreereevet et eeeeeeeeeesaeeneseeseas 502
30.6 Supported Transact-SQL procedure language statementscceevvveereverenenes 502
30.7 Returning result sets from Transact-SQL procedurescceeeeveveverenervevenenns 513
30.8 Variable and cursor declarationscccceeveeeeererereneeererereeeeeeeeneseseseeecseneseseone 514
30.9 Error handling in Transact-SQL Procedurescocoevvveeerereereeeeseereereseeseeseens 516

31 Using the Open SEIVEr GAEWAYcccvermrerereeriereierieseesessessesseseesssssessessssseseessesseses 519
31.1 Open Server GateWay OVEIVIEWcccucuivueeuivuiieiieireeseereeeeseeeseeseeseeseessssssssaesses 520
31.2 Open Server Gateway architeCtUrecceevvveereereereriniereerereeseeresssseessesesesns 520
31.3 What you need to use the Open Server GateWaycecevevererererenererereresnenenes 521

xi

Table of Contents

31.4 Setting up the Open Server GatEWAaYccceeuereiieeeieieeieinieesseseeesesnsseseneaes 522
31.5 Events handled by Open Server Gatewayccocevieieriereerinresisesesssssesiesennes 524
The SQL Anywhere Programming INterfacesccoevieieeniiiiniiininieeciceccecne 529
32 Programming INtEIFACEScocceivivirieniiiiinintititeete ettt 531
33 The Embedded SQL INtEITACEcceeeierieeienieeeeeieneenieeeesteesneesresae s esnesaseesanenne 533
33.1 The C language SQL PIrEPIOCESSOTcceeruirrmrurrieeseisriesenseeinsrassessessesnsssesssassense 534
33.2 Embedded SQL interface data typesccccceveeeviiisiiinieesieinnieniiniieeiesnennessesnnnens 542
33.3 HOSE VATIADIESceceerereereneenrenieeeecnceeitenetst ettt saesst e e e e s e e ebaessesassessaeseeseas 544
33.4 The SQL COMMUNICALION ATCAeeerueeruerrerrrrirrruiisieesrissseisseenssesisesssenssesasessssssaaes 550
33.5 FetChing dataccoveveeeeuereeereeceiieiiciiiii ettt sse e e sanas 553
33.6 Static vs dynamic SQLcccccvieirinmiiiniiininiiieeceere s 558
33.7 The SQL deSCIIPLOr AT Ac.cccveeueeueriiieiiiiiieinieeseicstest et et sse s sassesae s sssessesas 566
33.8 SQL procedures in Embedded SQLccooiiiiiiiiiiieecnenne 572
33.9 Library funCtionsc.ccceeeveueriririererenieninseinssssssssnssssisssssesssnessssesesssssssssssesssacsesns 577
33.10 Embedded SQL commandscoceeveeeereererceneenenneeneniinnesniisnessssssessesseesnenns 600
33.11 Database EXAMPIESccceveuiremiruieruerereriesesiteesteesseses e se st e st snenenes 602
33.12 SQLDEF.H header filecccovvereneneneeeieiiiiicniinneiieeietsaessesess st e s snas 617

34 ODBC PrOGramiilEccccccereereruerueruisuesessmiienseesessesssssessesesssssssssessessesstsssessesssessesss 621
34.1 ODBC C language programmingccceceeeereereeresiessessessessessssssssssesseseessesessenes 622
34.2 ODBC programming for the Macintoshccooeevenieiiininininncncicneencnne 630

35 The WSQL DDE SEIVETccvueirreererneeririsiesiiississsssessessesesessesssssesssssssassesssssssessassens 633
35.1 DDE CONCEPLS ..voveveveeeueeeneruenenneressiesissestssesssssesessesessessesessessessessssesssssssessassessenees 634
35.2 Using WSQL DDE SEIVETccccoeviruiiirinirieriinsereeseisieiessssssssssstssescssssessssensesens 635
35.3 Excel and WSQL DDE SEIVErcccccceiviiiiiiiiniiiiiiiiiiiiecerreeeeesase et sane s 640
35.4 Word and WSQL DDE SEIVETcccccvreriiriiininiiniiniiiciereeeeeesesssssessesssssssssens 642
35.5 Visual Basic and WSQL DDE SEIVETccccccevuiiriiiniiiniiniieenineniennesieesnessnessanns 643

36 The WSQL HLI INEITACEccvevvieveereeiicnieniriiinniiiiiiecnrcicit et ssessesae e sae s eeenee 647
36.1 DLL CONCEPLS .v.veurererrrnirereeeeacnccteseesssesetssssissssessesessssessssesssessssssesssssssssasassnssssess 648
36.2 Using WSQL HLIcoeuvururinermrcniictcninsesneteresesestesesese e sssssesesssssssesssssssssesenencs 648
36.3 Host variables with WSQL HLIccccoociiniiiniinminniiniiniciienecnreneeenneene e 648
36.4 WSQL HLI fUNCHONSeovevereveecerecenrerintiniiinsctesisssesssaesesaesessesssssssssssssassssaseses 649
36.5 wsqlexec command SIHNESc.cccererrereererieienieeieneeneeee st 656
36.6 WSQL HLI and Visual BasiCccoceveeeirinermenerereiniiiiisesisesssessssesssssssssesesens 671
36.7 WSQL HLI and REXXcccceeveieeerirmnmiinierenieeinseninsesctesesssaesessesssesessssesassssassesens 674

Table of Contents

RETETEIICEonviiiiinitc ettt et sttt e b ettt ae et aeebe s eanan 677
37 SQL Anywhere COMPONENLSc.cceevrrerereeererersererteerssestesessesesssssssssssesssessesesssessessesses 679
37.1 Environment Variablesccoceeoieeeinrenieieieeeeee ettt re bt ennens 682
37.2 Software component return COAEScccoceiieiririiiiiiiiiiicieieeeeeeteete e sesaenesnens 685
37.3 The database ENGINEcc.ccccivriririennieienrereeeeeeiee e ee st eess e essessessessessessensesssens 685
37.4 The ISQL UHLLY ...ooveviieiiieieieierieieetesirtrteeee ettt ereeae e essese s seesaenns 692
37.5 The bacKup ULILILYccccoveveevirieiiieiiniientese e et et cae e eaeere s ese e esseeaseenns 695
37.6 The SQL AnYWhere CLENEcocoourvimvieeereereireereeteneeeeseeseseeseeseessenesaessesseessensens 699
37.7 The collation UHILYccccecivieiriiineninineseee et sese e ee e e s se s easese s ensanns 700
37.8 The Erase UtILYccocevuiviiiiiiieietiriniitesieseecresseesee e e eeesesesseesessaeseesresseeesnennns 703
37.9 The database uncompression ULILILYccccceeeveerereeieeseenreniseeieeeerreeeeeseeesneennes 705
37.10 The database information Utilityc..ccoeeveeverveeeeieiireeeeee e 707
37.11 The database initialization UHHLYcccoeereereeeereeeeieeereeceeeereereereerese e enrennes 710
37.12 The transaction 108 ULIlILYcceceeuiverireriecirieeieeeestece et ee et eraeneen 716
37.13 The Open SErver GAEWAYc.cocecerereeuenieririerertesessesssessesessessssessssesssessessenes 719
37.14 The DBOSINFO UHHLYc.coteviriiiirieriieeeieieieie ettt ee e eaese e eneeneens 721
37.15 The DBOSSTOP ULILILYcccoveveuirereeieiniienieeinierirteeesteeeaesevese s eseeesesseseenennes 722
37.16 The SQL Remote Message AZENtcccoeeveereereereereveriereeeseereeseeseesessesseeseensenes 723
37.17 The database cOmPression UHILYc.ccceceeerererrereerinesereeesrereerecresseeeeseeseennas 724
37.18 The StOP ULLILY ...cceevveiiiiiiriinierireririrest et ee e ae et eraeae e e e ae e s nseenseenees 727
37.19 The log translation UHILYcccocoeveueerinieininineeeneeererteee et e e eae s 728
37.20 The Unload Utilitycccoeeceirirreienieinininieenteiesteseeteeiereesesesse et e v s s eneeneas 731
37.21 The UpGrade ULIlityccccccviviiiininiiiriccneecntceeieeeteeese s et et asve s esae e ne s 736
37.22 The validation Utilitycccccceuiveermeeneninieereeertetetrees e seese e reene 738
37.23 The DBWATCH server monitoring facilityccccceceeveeeereereecveieneeeeseeeneene. 740
37.24 The Write file UHIELYc.cccoevevereeinirineeiee ettt s e s s b neenean 741
37.25 The SQL Remote database extraction Utilitycccceeceveerevveeeeereereeeereeeennenne 744
37.26 The REBUILD batch or command fileccceveeiruevreeceeeeeereereceeereeree e 748
37.27 The SQL PIePIOCESSOTcvecvertereieririereereeseeeeeeeeeeeeeeeteeaeeeesae e eeeeeseeeseesaeeeneeenes 748
38 Watcom-SQL Language RefErenceceoieuieveriieiieiieieeiieieeeeeceteeeeevesveseeeeessesseeneens 751
38.1 SYNAX CONVENLIONSeevverierieenrenrerenintiieitesteeseeereeseeseeseessesssssesseessessesssesssssssesneas 752
38.2 Watcom-SQL language €lementsc.ccceevveeeeceeceeeeeeeeerereeeeeeseeseesseeseeseens 752
38.3 DALA LYPES .eovirriuiiiciinreiireeeeete ettt ste et r sttt eseerseneeaeeseensennens 755
38.4 Functions 765
38.5 EXPIESSIONS ..ovoviviiiiiiiciiiititctiittc et e e ve e be st e s bt ess s ess s ensesens s enseneesenes 795
38.6 Search CONAItIONScccoveeiriiiiiiiiiiniriecetesest et re et sere s ee e essessessessessenbennes 803
38.7 Comments in Watcom-SQLcccoeiuiiiiiiiiieeeeeeeeeecteeereeeeeereseteeeseeesseesssessssessseaeas 811
38.8 SQL Statement SYNLAXccceceeeerereeemrmiiesrerreeeeeeeessessesesesseseesessessessesesssssesssenes 812

xiii

Table of Contents

39 SQL Anywhere Database Error MESSagesccceiviiiiiuiicnnniinieicniiinnissesesesessesenens 1035
39.1 Error messages: alphabetic listing by messageccoevvueeeeneevcneninininneennennes 1036
39.2 Error messages: listing by SQLSTATEccoooiniiniiniiiieeetereeeeveeenens 1040
39.3 Error message deSCIIPHONSc.ccvueieruirienreeiienriiiiiieiieieee et satessesesssessessessessessens 1046

40 SQL Preprocessor EITOr MESSAZEScvevvririrrrenriiniieiniiiiieineeniieseesssessnesssssssssssessesnns 1093
40.1 SQLPP EITOTS ...cecverueeirierierenerteserestesiesssesstesaessasesstessseesssesssssssessassssesssssssssnsens 1094
40.2 SQLPP WAITNES ...c.ccervereuereerenrerereeereissessestestesiesessessessesssssessesssssssssssssssssssessses 1099

41 Sample Database Command Filecccovuvivuininiiniiineiinniinrcniicisieeeessssscsssseseseanes 1101

42 Differences from Other SQL Dialectsccccceeevueiiiiiiiiiiiniiiinieceneentecsensneeceaeeeans 1111

43 SQL Anywhere Limitationsccccccoeevirvirninimniininiiniiiinrcresniniesiececesesssseesessessens 1115

44 SQL Anywhere KeyWOordscccccccviiniiniiniiininiiiiiciiciiceeccsicssesasenessessessnessessens 1117

45 SQL Anywhere System Procedures and FUnctionsceeeevivcniieienneisnnessnssesnnnenes 1121
45.1 System Procedure OVETVIEWccocceeveiruiriiiniisiniesiiieissesssssessessessssssssssessessenses 1122
45.2 Catalog Stored ProCEAUIEScoeevererrisrenieriesericnriniisiesessscssessesssessesaessesssesens 1122
45.3 System extended stored ProCeduIESc..coevereeveervirinniinenensieeeneeriesesseeseenes 1123

46 SQL Anywhere System Tables ..ot 1131
46.1 System tables diagramc.cccoceciiiviiiiinininii e 1132
46.2 DUMMY SYSteM tabIeccccoverueeririniniiiiniiiiniiitiit et ssesse e seesesasesesssssnas 1132
46.3 SYSARTICLE SyStem tablecccocerirueririninreenieiniicisseseeesiesessssesessssesseseanes 1133
46.4 SYSARTICLECOL syStem tableccccocveriiriiniineiniiniiiinnciinienieeeeieseseessenns 1133
46.5 SYSCOLLATE system table 1134
46.6 SYSCOLPERM system table 1135
46.7 SYSCOLUMN system table 1136
46.8 SYSDOMALIN SYStem tableccccoceeevueriniiniiniiiinniinienienicnceeseenessseseenesseesnes 1137
46.9 SYSFILE SyStem tableccccevveeriiniiniiininiiinieinieineieennneienesesssesseesssessnessas 1138
46.10 SYSFKCOL SyStem tableccccevuviieviniriniininiiiinescieeeresessesesessssesessesesnens 1138
46.11 SYSFOREIGNKEY system tablecccovveeirurvirinnieniiniciiereeeneresessenesesens 1139
46.12 SYSGROUP SYStem tablecceeveruiririiniiniiniiniiiinieiiinieiesiesssesessessesssessessens 1140
46.13 SYSINDEX SYStem tableccccceevuerrereriinrinienrenicniinueiiesnesiesiessessessesnessnessesens 1141
46.14 SYSINFO SyStem tablecccoiveriniiinininiiiieeicscsceceeaescree e eesenes 1142
46.15 SYSIXCOL SYStEMm tablecccervrmruirircriiirinieiniiesiiseiissssscsissesessssessssessssessesns 1143
46.16 SYSOPTION SYStEM taDIEcoverviririiiiiiiiiiniiicicietiiscse et esnesaesnnes 1143
46.17 SYSPROCEDURE SyStem tableccccceivuiinuiinuineeiniineenneiisicsssisscnesesnesenes 1144
46.18 SYSPROCPARM SyStem tablecoouviviiuiriiiiinieiniecntenineecnnsssesesinesesessennsens 1145

Xiv

Table of Contents

46.19 SYSPROCPERM System tablecccocociiiiiinininicicieeieieneseienerescanssneseesssenenns 1146
46.20 SYSPUBLICATION SYStEIM tADIE ...c.cecveremrerereniriemeienetneeeneeeseeseseeentesessassaens 1146
46.21 SYSREMOTEUSER SYStem tableccceeveeuerueenieentrienisresesreseseseesenssesesseennens 1147
46.22 SYSSUBSCRIPTION SyStem tableccccoceieruererierenirenireneriereseesessesnssesesseennens 1148
46.23 SYSTABLE SYSteM tabIec.ccveeeerieeeieerecteeeteeeesieee et ereeere e eteebeeaeesnneas 1149
46.24 SYSTABLEPERM SYStem tablecccccevueeierierirrenreenenseseessesieesassessessesseenees 1150
46.25 SYSTRIGGER SYSteM tablecc.ccevimreveeresierienrenreereeteeeeeeeseeseeseeseseseseessesseennes 1152
46.26 SYSUSERMESSAGES system tableccccoceverieenirerenerenrereeresessesssaeseeseennens 1154
46.27 SYSUSERPERM SYSteM taIEccecvvrurerrireerireriiereeiereeeereneeseseeseeesessesesnesesnnens 1154
46.28 SYSUSERTYPE system tablecccecerereeeierirenirienirieinreesreessesesseesesesseesnens 1155
47 SQL Anywhere System VIEWSc.ccccemuririiuiririiieirteeeiees et sevestesessesesenesseseennen 1157
47.1 SYS.SYSCATALOGcoiviiiiiiiiriiieiecteieenteteie sttt st et e s sessesassssassesesans 1158
47.2 SYS.SYSCOLAUTHccooiriiiiinnieceictneiententerenessetetsessssesasssssessssesessesassessensn 1158
47.3 SYS.SYSCOLUMNScoriiiiiiiininreiierentetesestentesetesestssesessesestesessesestesesessessessansen 1159
47.4 SYS.SYSFOREIGNKEYScciiiiiirntienininietneestntetnteseseesessesessssesessessesaesaenns 1159
47.5 SYS.SYSGROUPS ...ttt estesetssesestesassassssassssesassesasssensen 1160
47.6 SYS.SYSINDEXESccoorriiriintnieieininientneetsiesteestssesteseseesesassassesessesessssesseseenses 1160
47.77T SYS.SYSOPTIONSooiiiiiiiiiiinicetnreeteteseestestestesssessessessessassasesssesessessensseens 1160
47.8 SYS.SYSPROCPARMScconiiiiiiinticntertntetneeeneetsterest et et sesessesassessaenne 1161
47.9 SYS.SYSTABAUTHcooiiiiiiriririniiintcreninteeeentststsieesesesteseseseessssssessssssssesennennes 1161
47.10 SYS.SYSTRIGGERScoooiiiiiiintniitnetntetnteeteestseesae s s sevesaesesasse s eas 1162
47.11 SYS.SYSUSERAUTHcceceiiuiiriiiiirinininieeinteieeentstessiesesesaesessssssssssssesssssenan 1162
47.12 SYS.SYSUSERLISToouiiiiiiriniitecectnienieteteiestneestesesesteaesaesessesassesassssassessenses 1162
47.13 SYS.SYSUSEROPTIONScoooiriirirentenieterterteteeeeeeesaesaeaesse s s sesseeseeseennean 1163
47.14 SYS.SYSUSERPERMSccooiiiinirinienenteinrenineetstesessesssesessesessesessesesssenseenes 1163
47.15 SYS.SYSVIEWS ..ottt ettt sttt st st et a et sa s esasnaesson 1163
A8 GIOSSATY ...ecuviviriiiiriiiiiieiitie ettt et sttt sttt b ettt st e st e st e e st esanesenansansenane 1165

XV

xvi

Chapter 1

How to Use This Book

About this chapter
This chapter introduces the SQL Anywhere User’s Guide.

Contents

» "About this manual" on the next page.

» "Graphic icons" on page 3

» "Product installation" on page 4.

» "Upgrading databases to SQL Anywhere 5.0" on page 4.
 "Contact information" on page 4.

1.1 About this manual

This manual describes how to build, run, and maintain databases using SQL
Anywhere, and how to build database applications that work with the SQL
Anywhere standalone database engine and network database server.

The manual includes the following sections.

In Volume 1 (Using SQL Anywhere):

* Tutorials

* Using SQL Anywhere

* Transact-SQL Compatibility

e The SQL Anywhere Programming Interfaces

In Volume 2 (Reference):
* Reference

The section "Tutorials" provide a step by step introduction to managing
databases with SQL Central, using the Interactive SQL environment, and
Structured Query Language (SQL). "Using ISQL" on page 53 shows you how to
use ISQL, and "Tutorials" on page 31 introduces most of the important features
of SQL, using a sequence of examples based on the supplied sample database.

Each chapter in "Using SQL Anywhere" describes a different aspect of the
product. Taken together, they provide a guide to building, running, and
maintaining databases and database applications with SQL Anywhere.

"The SQL Anywhere Programming Interfaces" on page 529 describes how to
use the programming interfaces to SQL Anywhere. The bulk of the section
describes the Embedded SQL and ODBC interfaces for use by C programmers.
Developers using ODBC-enabled application development systems, such as
Powersoft PowerBuilder, do not need to use this section: the information in
"Using SQL Anywhere" on page 125 and "Reference" on page 677, together
with your application development system’s documentation, cover all the
information needed to develop SQL Anywhere applications from
ODBC-enabled applications.

"Reference" on page 677 is a complete reference guide to SQL Anywhere
programs, supported commands with complete syntax, error messages, and
system tables.

The contents of this manual are also provided as online Help through SQL
Central, ISQL, and as a desktop icon.

How to Use This Book

1.2 Graphic icons

The following icons are used in this documentation:

g

This icon represents any database server, such as Sybase SQL Server or Sybase
SQL Anywhere.

7

|

&

)

This icon represents a SQL Anywhere database engine, or a SQL Anywhere
network server and Client. All applications that work with a SQL Anywhere
standalone engine work identically with a SQL Anywhere network server, via a
SQL Anywhere Client.

This icon

=,

W

This icon

represents a Sybase Replication Server.

represents a Replication Agent. A replication agent is required for a

database to act as a primary data site in Sybase Replication Server installations.

&

This icon represents a SQL Anywhere Log Transfer Manager.

This icon represents a client application.

1.3 Product installation

Installation instructions for SQL Anywhere are in the SQL Anywhere Read Me
First.

1.4 Upgrading databases to SQL Anywhere 5.0

SQL Anywhere 5.0 will run databases created with earlier versions of the
product (Watcom SQL), but some new features cannot be used without
upgrading the database. The following summary describes the version you must
have in order to use some features.

* To use procedures and triggers, you must be using a database that is at least
release 4.0.

* To use SQL Remote on existing databases, you must upgrade your database to
release 5.0.

¢ To access the Transact-SQL system procedures and system views, you must
upgrade your database to release 5.0.

The Upgrade utility is provided to upgrade 4.0 databases to release 5.0. The
Upgrade utility is accessible either from SQL Central or as the DBUPGRAD
command-line utility. The following statement at the command line upgrades a
4.0 database file named test.db to a 5.0 format:

dbupgrad -c "dbf=test.db;uid=dba;pwd=sqgl"

If you wish to use replication on an upgraded database, you must also archive
your transaction log and start a new one on the upgraded database.

1.5 Contact information

Contact information for technical support and sales inquiries is provided on the
separate Contact Sheet in this package, and in the online Help.

Chapter 2

New Features in SQL Anywhere 5.0

About this chapter

This chapter describes features introduced in SQL Anywhere 5.0.
Contents

* "What’s in a name?" on the next page.

* "New features overview" on the next page.

» "New features in the Watcom-SQL language" on page 8.
* "New sample database" on page 10.

2.1 What’s in a name?

Previous releases of this product were named Watcom SQL.

With the Sybase/Powersoft merger of February 1995, Watcom became a part of
Sybase, Inc. Watcom SQL is now a part of the Sybase System 11 Server product
line, and the new name of the product, SQL Anywhere, reflects that change. The
principal dialect of SQL supported by SQL Anywhere is named Watcom-SQL.

The Sybase SQL Anywhere name reflects the versatility of the product, and the
emphasis on both scalability and mass deployment. Sybase SQL Anywhere
gives you the high performance and reliability of a transaction-processing SQL
server, the ability to scale from single users to many users, and the flexibility to
deploy on multiple platforms. It’s a database designed for the workplace.

The new features outlined in this chapter include data replication and
Transact-SQL-compatibility, along with many others. We think you will agree
that these new features, built on the proven foundations of Watcom SQL, make
SQL Anywhere a powerful workplace complement to Sybase SQL Server in the
System 11 Server product line.

2.2 New features overview

While there have been many improvements and enhancements, the following are
major areas around which the new release has been designed:

SQL Remote data replication
SQL Remote is a message-based replication system for replication
between SQL Anywhere databases. It is built to be easy to use,
centrally administered, and ideal for replication to laptop and other
occasionally-connected users’ personal databases. SQL Remote is
discussed in the chapters "Introduction to SQL Remote
Replication" on page 349 and "SQL Remote Administration" on
page 379.

SQL Central database management tool
SQL Central is a graphical database administration tool that runs
on the Windows 95 and Windows NT 3.51 operating systems.
SQL Central conforms closely to the Windows 95 interface
guidelines, making it easy to learn and use. For more information
on SQL Central, see the chapter "Managing Databases With SQL
Central" on page 33.

Transact-SQL compatibility
SQL Anywhere 5.0 includes a set of extensions to the

New Features in SQL Anywhere 5.0

Watcom-SQL language from the Sybase Transact-SQL dialect.
This makes the development of compatible applications for SQL
Anywhere and SQL Server database servers much more
straightforward, and also brings new features to all SQL
Anywhere users. For more information on Transact-SQL
compatibility, see the chapters "Using Transact-SQL with SQL
Anywhere" on page 437 and "Transact-SQL Procedure Language"
on page 497.

ODBC 2.5 support

SQL Anywhere 5.0 now supports ODBC 2.5 at level 2 for the
Windows 95 and Windows NT operating systems, and ODBC 2.1
for the Windows 3.x operating system.

Open Server Gateway

The Open Server Gateway allows client applications to work with
both SQL Server and with SQL Anywhere database servers. For
more information on Open Server Gateway, see the chapter
"Using the Open Server Gateway" on page 519.

Data replication with Sybase Replication Server

The Open Server Gateway allows SQL Anywhere to act as a
replicate site database in Sybase Replication Server installations.
A separate products, the SQL Anywhere Replication Agent,
allows SQL Anywhere databases to act as primary data sites in
Replication Server installations.

Performance improvements

Performance enhancements do not require extensive
documentation. However, there are major improvements to the
speed of many tasks performed by SQL Anywhere since the last
major release.

System functions and performance monitoring

An extensive set of system functions allows access to statistics
concerning database engine or server performance. These are also
available from SQL Central. Statistics from the Windows NT
engine and network server can be viewed in the NT Performance
Monitor. For information, see the chapter "Monitoring and
Improving Performance" on page 261.

SQL extensions

The Watcom-SQL language has been extended in many areas to
provide more flexibility and power to SQL Anywhere users. For

more details, see the section "New features in the Watcom-SQL
language".

Transaction log mirroring

SQL Anywhere can optionally maintain two identical transaction
logs. Transaction log mirroring provides additional protection
against loss of data due to disk failure. For more information on
transaction log mirroring, see the chapter "Backup and Data
Recovery" on page 331.

MAPI system procedures

System external procedures are supplied that allow MAPI e-mail
calls to be made from stored procedures. For more information,
see the chapter "Using Procedures, Triggers, and Batches" on page
215.

Calls to external DLLs from procedures

You can now create procedures that call external DLLs. For more
information, see the chapter "Using Procedures, Triggers, and
Batches" on page 215.

2.3 New features in the Watcom-SQL language

Watcom-SQL is the dialect of SQL supported by the SQL Anywhere standalone
database engine and network server. The extensions to Watcom-SQL in this
release include improvements in the following areas.

Stored procedure extensions

Stored procedures are easier to create, have more flexible
parameter declarations (including default values and optional
parameters in CALL statements), and can return status
information. For more information, see the chapter "Using
Procedures, Triggers, and Batches" on page 215.

User-defined functions

Batches

With the new CREATE FUNCTION statement you can use the
SQL Anywhere stored procedure language to define new
functions, which can then be used just as other functions are used.
For more information, see the chapter "Using Procedures,
Triggers, and Batches" on page 215.

This release introduces support for batches of SQL statements.
Control statements (IF, LOOP, and so on) are now available in
command files as well as in procedures and triggers. For more

New Features in SQL Anywhere 5.0

information, see the chapter "Using Procedures, Triggers, and
Batches" on page 215.

Statement level triggers
Triggers can be made to fire once after each statement, as an
alternative to the row-level triggers supported in previous releases.
For more information, see the chapter "Using Procedures,
Triggers, and Batches" on page 215.

New Watcom-SQL language elements
These include global variables, new operators, and new comment
specifiers. For more information, see the "Watcom-SQL language
elements" on page 752.

New built-in functions
New numeric, string, date and time, and data type conversion
functions have been added, as well as new system functions. New
functions include the following:

e PATINDEX for pattern matching.
* system functions describing database properties.

For more information, see the section "Functions" on page 765.

User-defined data types
You can define your own data types from the existing base data
types supported by SQL Anywhere. For more information, see the
section "Data types" on page 755.

Extensions to data manipulation statements
The DELETE, and UPDATE statements have been extended to
support criteria based on joins. For information, see "DELETE
Statement" on page 885 and "UPDATE Statement" on page 1027.

System stored procedures
SQL Server provides stored procedures for carrying out database
management functions. The system tables of SQL Server and of
SQL Anywhere are different, but several of the system stored
procedures are provided to carry out analogous actions on each.

More flexible column constraints
Prior to this release, all constraints associated with a table,
whether column constraints or table constraints, were held as a
single table constraint. Column constraints are now held
individually, allowing them to be individually deleted or replaced.

For more information, see "ALTER TABLE Statement" on page
820

Other new statements
Other new statements have been added: LOAD TABLE,
UNLOAD TABLE, TRUNCATE TABLE, MESSAGE,
EXECUTE IMMEDIATE, RETURN, and others. For
information, see the listing in the chapter "Watcom-SQL language
elements" on page 752.

2.4 New sample database

The sample database has been changed in this release. The new sample database
contains employee, sales, product and financial information for a small
company. The database is a subset of the PowerBuilder demo database. The
following diagram illustrates the sample database structure.

customer contact
- i The sample database = T
thame char(15) last_name char(15)
Iname char20) first_name cha(15)
address char(35) title chan2)
city chan20) street chan30)
state char2) city char(20)
zip char10) state char2)
phone char(12) zip char(5)
company_name chan35) phone char(10)
fax char(10)
sales_order employee

<pk> integer emp id <pk> integer

cust_id <> integer manager_id integer

order_date date emp_fname charn20)

u-cuth fin_code_id <t char2) emp_lname char(20)

region chan?) dept_id <f> integer

sales_rep <> integer street char4o)

sales_order_jtems city charn20)

T T state chan4)

],'?ne i ':L:‘:_) integer L-————b zip_code chan@)

line id <pl> smallint emp_id= sakes_tep hon har10

prod_id <fic> integer (- phone char(10)

quantity integer Cone = h_codk_id status cha1)

ship_date date ss_number char(11)

— salary numerio(20,3)
start_date date
termination_date date
birth_date date
bene_health_ins char(1)

e o 1 fin_code bene_lite_ins char(1)
proa code sple chai2) bene_day_oare char(1)
type char(10) sex ohar(1)
description chai(50)
3
1 dept K= Gept K
product ©c0de = code emp_kd= dept_bead_id
id <pk> integer
name chan(15)
description char(30) fin_data
size char(18) year <pk> char4) department
color chan®) quarter =pk> char2) dept id <pk> integer
quantity integer o <pkfe char2) dept_name ohar40)
unit_price numeric(15,2) amount numeric@) dept_head_id <fk> integer

10

The sample database is called sademo.db. The old sample database is provided,
but is no longer used in the documentation.

11

12

Chapter 3

An Overview of SQL Anywhere

About this chapter

This chapter presents an overview of SQL Anywhere architecture on a single
computer, and on a network.

An application developed in a standalone environment can be deployed in a
multi-user LAN environment with no alteration to the code whatsoever.

This chapter also introduces terminology for relational database management
systems, and introduces the database management tools included in your SQL
Anywhere package.

Contents

* "The SQL Anywhere engine and the SQL Anywhere server" on the next page.
* "Running SQL Anywhere on a single computer" on the next page.

* "Running SQL Anywhere on a network" on page 18.

* "Running mixed operating systems on a single computer" on page 21.

* "SQL Anywhere programming interfaces" on page 23.

» "The SQL Anywhere programs" on page 24.

13

3.1 The SQL Anywhere engine and the SQL
Anywhere server

SQL Anywhere includes two different executables for managing databases:

¢ The database server, for managing databases using a client/server arrangement
on networks.

¢ The database engine, for managing databases on a single computer, in a
standalone mode.

The SQL Anywhere server and SQL Anywhere engine manage databases in
exactly the same way and are completely compatible. However, the SQL
Anywhere engine has no support for network communications.

Server and engine

The terms engine and server are used in this manual to refer to the database
engine and database server. In contexts where either the engine or the server
could be used, the terms are used interchangeably. When the engine and server
need to be distinguished, the terms standalone engine and network server are
sometimes used to emphasize which one is meant.

The following sections describes the architecture for running SQL Anywhere on
a single computer using the SQL Anywhere engine, and for running SQL
Anywhere across a network using the SQL Anywhere server. Running more
than one operating system on a single computer is a special case, and is
described in section "Running mixed operating systems on a single computer” on
page 21.

3.2 Running SQL Anywhere on a single computer

14

The figure shows the architecture of a standalone SQL Anywhere installation,
running a single database engine and working with a single database. All more
complicated arrangements are elaborations of this basic setup, so you should
understand how the basic setup works, even if you are operating a multi-user
client/server installation.

An Overview of SQL Anywhere

Client
application

SQL
Anywhere
Data
server

The components of the basic standalone SQL Anywhere setup are:

» The client application.

* The SQL Anywhere interface layer.
* The SQL Anywhere database engine.
* The database.

Database users do not directly manipulate database files. Instead, their client
application communicates with the database engine, using a programming
interface supported by SQL Anywhere, and the database engine handles all
manipulation of the actual database.

This section does not describe the situation of a client application and a database
server for different operating systems running on the same computer. For a
discussion of this arrangement, see the section "Running mixed operating
systems on a single computer" on page 21.

15

3.2.1 The client application

Database users work with a database application, or client application.

Typical client applications include:

* Report generators such as Powersoft InfoMaker, for presenting information
from a database to a wide audience.

* Application development systems, such as Powersoft PowerBuilder.

* Spreadsheet applications for analyzing data in the database.

» Word processor macros that extract names and addresses from a database for
mail merges.

» Database administration tools, such as SQL Central, included with SQL
Anywhere.

» Database design applications, such as Powersoft S-Designor.

* Custom-built applications developed using a development system such as
PowerBuilder, or developed using a programming language such as C or C++.

3.2.2 The SQL Anywhere interface layer

16

A client application communicating with the SQL Anywhere database engine
must do so using a programming interface supported by SQL Anywhere. The
client application calls functions from one of the SQL Anywhere programming
interfaces.

If you are building a client application from an ODBC-enabled application
development system, such as Powersoft PowerBuilder, or others, you do not
need the information in the section "Programming Interfaces". These application
development systems already implement an ODBC interface internally.
Application development systems form an extra layer that sits between the
application developer and the SQL Anywhere interface, and you should consult
your application development system’s documentation to understand how to
communicate with a database engine.

If you are using one of the programming interfaces directly to develop client
applications, you should understand the SQL Anywhere programming interface
you are using. The programming interfaces are described fully in the section
"Programming Interfaces".

The client application together with the interface layer form the client side of the
setup.

An Overview of SQL Anywhere

3.2.3 The SQL Anywhere database engine

The database engine and the database together form the server side of the setup.
A client application manipulates a database by sending requests to the database
engine.

Communications between a client application and a database engine take the
form of Structured Query Language (SQL) statements. For example, a SELECT
statement, or query, is used to extract information from a database. An
UPDATE statement may be used to modify the contents of one of the database
tables.

The client application sends the SQL statements, the database engine processes
them and sends the results back to the client application.

Running an application against a SQL. Anywhere network server generally
requires an extra component to handle network communications from the client
computer (see "Running SQL Anywhere on a network" on the next page).
However, for applications on the same computer the database server can be run
in exactly the same manner as the standalone database engine described here
using a direct connection to the network server.

Client applications connected to a network server through the direct connection
are not displayed on the server screen. Also, they are not affected by the
network server client timeout setting (the -i command-line switch). If a SQL
Anywhere Client is running, and the network server is running on the same
machine, the Client will not be used by client applications connecting on the
same machine; the connection will be direct.

For a discussion of running a client application and a database server for
different operating systems on a single computer, see the section "Running
mixed operating systems on a single computer" on page 21.

3.2.4 The database

SQL Anywhere is a relational database system. The database itself is stored on
one or more disk drives, and consists of the following objects:

e Tables, which hold the information in the database.

* Keys, which relate the information in one table to that in another.

¢ Indexes, which allow quick access to information in the database.

¢ Views, which are computed tables.

* Stored procedures, which hold queries and commands that may be executed
by any client application. (Stored procedures are not available in the SQL
Anywhere Desktop Runtime system.)

17

* Triggers, which assist in maintaining the integrity of the information in the
database. (Triggers are not available in the SQL Anywhere Desktop Runtime

system.)
 The system tables, which hold the information about the structure of the
database.

Multiple databases on a single database engine

A single SQL Anywhere database engine can manage access to several databases
simultaneously. You can start and stop databases from database administration
tools or client applications, and you may connect to any of the currently running
databases on a database engine.

As far as the database user is concerned, interaction with a database engine is
always through a connection. Each time a user connects to a database, supplying
a valid user ID and password, they are connected to a specific database on a
specific database engine. Once a connection is established, it provides a channel
through which all communications go. The connection insulates the user from
the other components of a running database system such as network sessions and
interprocess communication mechanisms.

Multiple-file databases

SQL Anywhere supports multiple-file databases. When a SQL Anywhere
database is first initialized, it is composed of one file—the root file. As tables
and other database objects are added to the database, however, they may be
stored in different files, which may be on different disk drives from the root file.

Users of the database (other than the database administrator) need not even be
aware of the physical location of database files. The database engine handles all
access to the files, and shields this complexity from the user.

3.3 Running SQL Anywhere on a network

18

SQL Anywhere Server products support connections from many users at a time,
over a network. In this case, the database engine runs on one computer (the
database server computer), while client applications run on other computers
(client computers).

The SQL Anywhere server supports multi-user network access to SQL
Anywhere. The SQL Anywhere standalone engine does not support multi-user
access or network communications.

An Overview of SQL Anywhere

Client
application

SQL
Anywhere
Data
server

The client side of the SQL Anywhere setup sends SQL queries and commands
over the network to the server side, which carries out commands and sends the
results of queries back to the client.

The SQL Anywhere Client is a program that handles network communications to
the SQL Anywhere database server. The SQL Anywhere Client is a program
named DBCLIENT (the Windows 3.x version is called DBCLIENW). The SQL
Anywhere Client communicates with the SQL Anywhere network server. The
standalone engine cannot handle communications from the SQL Anywhere
Client.

For QNX, the database client is different from other operating systems. Instead
of being a separate executable, the SQL Anywhere Client is a library named
dbclient, which is loaded dynamically by client applications.

From the client application’s point of view, there is no difference between the
standalone setup and the network setup. In the single-user setup, a client
application sends requests and commands to the database engine. In the
multi-user setup, these requests are sent to the SQL Anywhere Client instead. In
each case, the client application has a single point of contact with the database

19

management system. The additional complexity of handling requests in a
multi-user, networked environment, is hidden from the client application.

Standalone applications work with the SQL Anywhere network server
Once a client application is developed and working on a standalone SQL
Anywhere setup on a single computer, no changes are needed to the
application in order for it to work as a client application in a network
environment against a SQL Anywhere server.

For more information on the SQL Anywhere network server, see the SQL
Anywhere Network Guide.

3.3.1 SQL Anywhere multi-platform support

The SQL Anywhere standalone database engine is available for the Windows
3.x, Windows 95 and Windows NT, OS/2, and DOS operating systems. The
SQL Anywhere database server is available for Novell NetWare, Windows 95
and Windows NT, 0S/2, Windows 3.x, DOS, and QNX operating systems.

One SQL Anywhere database server can support multiple clients operating on
different operating systems, communicating via different network protocols.

3.3.2 Some database terms

20

With a single database running on a single database engine, the default settings
make the engine name, the database name, and the database file the same, apart
from the path and extension associated with the file. In this situation there is
little ambiguity when talking about "the database".

In environments with multiple databases, multiple database files, and several
database engines operating simultaneously, it is important to distinguish among
the different components that make up a running SQL Anywhere database
management system.

Here is a list of terms used in this documentation.

Database file Even though the tables of a database may be held in several files
on several disk drives, each database is identified by a single root
file. Throughout this book, when reference is made to a database
file, it is referring to the root file.

Database name or alias
A SQL Anywhere database engine or server can run several
databases simultaneously, managing access to each of them.
When a database is started on a database engine, it is assigned a

An Overview of SQL Anywhere

database name, also called the database alias. If no database
name is explicitly assigned, the database receives the name of the
root file with the path and extension removed.

Server or engine name
When a database server or engine is started, it is assigned a server
name or engine name. The server or engine name is entirely
distinct from the name of the database engine program itself. By
default, the server name is the first database name. For example,
if a database engine is started with database
c:\sqlanyS0\sademo.db and no name is explicitly given, then the
name of the engine is sademo.

Clients and servers

Both the client side and the server side of a SQL Anywhere client/server setup
consist of several components. The terms client and server themselves are
commonly used to describe not only the computers on which each side of the
setup sits, but also the programs that are communicating, and also the collection
of software components on each of the computers. Throughout this guide, the
terms client and server are qualified whenever possible to specify which of these
meanings is being invoked.

3.4 Running mixed operating systems on a single

computer

SQL Anywhere supports situations in which client applications and the database
engine run under different operating systems on the same computer. This
support requires a SQL Anywhere Client (DBCLIENT) for the client application
operating system. You can think of the mixed operating system setup as a
client/server network arrangement, with both client and server sides residing on
the same computer.

The situations where this can occur are:
* DOS or Windows client applications with an OS/2 engine.

* DOS or Windows 3.x client applications with a Windows 95 or Windows NT
engine.

21

3.4.1 DOS or Windows client applications on 0S/2

The OS/2 standalone engine or network server can be accessed from a DOS or
WIN-OS/2 client application on the same machine.

The client application communicates with the SQL Anywhere Client for the
client application operating system. (The DOS and Windows 3.x SQL
Anywhere Clients are installed with SQL Anywhere for OS/2 or as a separate
install with the Desktop Runtime System for OS/2.) The SQL Anywhere Client
handles the communication with the OS/2 database engine or server using named
pipes or DDE.

The command line to run the DOS client is:
dbclient <engine-name>

The command line to run the Windows 3.x client is:

dbclienw <engine-name>

SQL Anywhere also supports access to network servers elsewhere on the
network simultaneously via a separate communication link in the SQL
Anywhere Client. For more complete information, see the SOL Anywhere
Network Guide.

3.4.2 DOS or Windows 3.x client applications on Windows
95 or Windows NT

The Windows 95 or Windows NT database engine can be accessed from a DOS
or Windows 3.x client application on the same machine.

The client application communicates with the SQL. Anywhere Client for the
client application operating system. (The DOS and Windows SQL Anywhere
Clients are installed with SQL Anywhere.) The SQL Anywhere Client handles
the communication with the Windows 95 or Windows NT database engine or
server, using named pipes.

The command line to run the DOS SQL Anywhere Client is:
dbclient <engine-name>
The command line to run the Windows 3.x SQL Anywhere Client is:

dbclienw <engine-name>

SQL Anywhere also supports access to network servers elsewhere on the
network simultaneously via a separate communication link in the SQL
Anywhere Client. For more information, see the SQL Anywhere Network Guide.

22

An Overview of SQL Anywhere

3.5 SQL Anywhere programming interfaces

The conversation between a client application and a database engine or server
takes place through a SQL Anywhere programming interface. The available
programming interfaces are:

* High level interfaces in ODBC-enabled application development systems such
as Powersoft PowerBuilder, and in applications with ODBC-enabled macro
languages.

¢ Low-level full-function interfaces: ODBC and Embedded SQL

* High-level interfaces: WSQL DDE and WSQL HLI

This section describes the main characteristics of the high and low-level
interfaces. For more detailed information and guidelines to help you choose the
most appropriate interface, see "Programming Interfaces" on page 531.

3.5.1 Low-level programming interfaces
ODBC and Embedded SQL provide low level interfaces to SQL Anywhere.

ODBC is supported by a wide range of database management systems and is
implemented for Windows, Windows NT, and OS/2 as a database driver: a
dynamic link library (DLL) that an application invokes to gain access to SQL
Anywhere databases. On other platforms, the ODBC interface is implemented
as A

Embedded SQL is slightly quicker than ODBC, and has a wider set of functions.
Embedded SQL is implemented as a C/C++ language preprocessor, which
translates SQL statements embedded in your code to into calls to the interface.
The interface is implemented as a DLL for Windows, Windows NT, and OS/2,
and as a library on the other platforms.

The ODBC interface
The ODBC interface is the most widely-used interface to SQL Anywhere.

SQL Anywhere supports the Microsoft Open Database Connectivity (ODBC)
interface not only in the Windows and Windows NT environments, but also on
DOS, 0S/2, the Macintosh, and QNX. This low level interface provides almost
all the functionality of Embedded SQL with, in the SQL Anywhere
implementation, only a small performance penalty. Client applications using the
ODBC interface can work with many different relational database management
systems.

23

SQL Anywhere supports all of the ODBC Version 2.1 API functions (Core,
Level 1, and Level 2). For a full description of ODBC programming, see the
chapter "ODBC Programming" on page 621.

The Embedded SQL interface

The native programming interface of SQL. Anywhere is Embedded SQL. SQL
Anywhere comes with dynamic link libraries (normal libraries in DOS, QNX,
and NetWare) and a preprocessor to enable development of C and C++
applications using Embedded SQL.

For a full description of Embedded SQL programming, see the chapter "The
Embedded SQL Interface" on page 533.

3.5.2 High-level programming interfaces

SQL Anywhere also provides two higher level programming interfaces, DDE
(Windows and Windows NT only), and HLI (Windows, OS/2, and Windows NT
only). High-level interfaces to SQL Anywhere are also provided by
ODBC-enabled application development systems and applications.

The DDE interface

The DDE server is a Windows application that enables you to access and alter
data in SQL Anywhere databases using dynamic data exchange (DDE). Many
Windows applications, including leading spreadsheets and word processors,
support the DDE protocol.

The HLI interface

The HLI is provided as a DLL for Windows, OS/2 and Windows NT, and can be
used from any application or environment that can call DLLs. It is simpler to
use than ODBC, but also slower and supports less functionality.

3.6 The SQL Anywhere programs

SQL Anywhere includes a set of database administration tools, as well as the
SQL Anywhere database engine itself.

Each of the database tools is a SQL Anywhere client application, and
communicates with the database engine using the Embedded SQL interface.

The Windows 3.x version of many of the programs has a slightly different name,
ending with a W, so that Windows 3.x applications can coexist in the system
path with Windows 95, DOS, OS/2, or Windows NT applications.

24

An Overview of SQL Anywhere

For reference information about each of the utilities in your SQL Anywhere
package see the chapter "SQL Anywhere Components" on page 679.

3.6.1 The SQL Anywhere database engine and server

At the core of SQL Anywhere is the database engine or database server, which
handles all requests from client applications, and carries out all manipulations of
the database.

The name of the database engine or server executable depends on the operating
system, as follows:

SQL Anywhere, for Windows 3.x
dbengS0w.exe is a 32-bit database engine, and dbeng50s.exe is a
16-bit database engine provided for computers that can run
Windows 3.x only in standard mode.

SQL Anywhere, for operating systems other than Windows 3.x
dbeng50.exe

SQOL Anywhere Desktop Runtime System for Windows 3.x
rtdskS0w.exe is a 32-bit database engine, and rtdsk50s.exe is a
16-bit database engine provided for computers that can run
Windows 3.x only in standard mode. The runtime database
engines are distributable royalty-free on purchase of the SQL
Anywhere Desktop Runtime System.

SQL Anywhere Desktop Runtime System, for operating systems other than

Windows 3.x rtdsk50.exe The runtime database engine is distributable
royalty-free on purchase of the SQL Anywhere Desktop Runtime
System.

SQOL Anywhere database server for Windows 3.x
dbsrv50w.exe is a 32-bit database engine.

SQOL Anywhere database server, for operating systems other than Windows 3.x
dbsrv50.exe, dbsrv50.nlm for the NetWare Loadable Module,
and dbserver for QNX.

The SQL Anywhere Client, dbclient.exe, enables client applications to
communicate with the network database server. For Windows 3.x, the SQL
Anywhere Client executable is named dbclienw.exe. For QNX, the SQL
Anywhere Client is a library named dbclient, which is loaded at run time.

25

3.6.2 The SQL Anywhere Desktop Runtime database

engine

26

The SQL Anywhere Desktop Runtime System contains a runtime SQL
Anywhere database engine that supports database manipulation language (DML)
SQL commands. This engine may be redistributed.

The runtime version of the database engine:

is a transaction-processing database engine;

fully supports the DML subset of SQL commands, such as SELECT, INSERT,
UPDATE, and DELETE;

provides full referential integrity, including cascading updates and deletes;
supports declared temporary tables;

allows users to be added to a database;

works with existing databases.

Runtime and standalone database engine differences

The functions supported by the SQL Anywhere standalone database engine that
are not fully supported in the runtime database engine are as follows:

Replication You cannot replicate data using the runtime database engine.

ALTER statements

You cannot use the ALTER statements. You cannot use the
ALTER DBSPACE command to modify the characteristics of the
main database file or extra dbspace. You cannot use the ALTER
TABLE command to change table definitions. You cannot use the
ALTER PROCEDURE command to change procedure definitions.

CREATE statements

You cannot use any of the CREATE statements that modify
database structure:

* CREATE DATATYPE to create user-defined data types.

¢ CREATE DBSPACE to create new database files.

* CREATE INDEX to create indexes.

* CREATE PROCEDURE to create procedures.

¢ CREATE FUNCTION to create user-defined functions.

e CREATE TABLE to create tables or temporary tables.

* CREATE TRIGGER to create triggers.

e CREATE VIEW to create views.

* You can use CREATE VARIABLE to create SQL variables, as
SQL variables do not form part of the database definition.

An Overview of SQL Anywhere

COMMENT statement
You cannot add comments to the system tables.

DROP statement
You cannot use the DROP statement to drop a DATATYPE,
DBSPACE, FUNCTION, INDEX, TABLE, VIEW,
PROCEDURE, or TRIGGER from the system tables.

CALL statement
You cannot invoke procedures.

GRANT statement
You can grant the special user permissions (CONNECT, DBA,
RESOURCE, GROUP, MEMBERSHIP IN GROUP) using
GRANT, but you cannot change permissions on tables and views.

REVOKE statement
You can revoke the special user permissions using REVOKE, but
you cannot change permissions on tables and views.

Triggers Triggers will not be fired by the runtime database engine.

No transaction log
To simplify database administration, the runtime database engine
does not employ a transaction log, Users of the runtime database
engine should backup their databases by making backup copies of
their database file itself.

The database engine options that refer to transaction logs (-a, -f)
are not applicable to the runtime database engine.

The DBBACKUP options described in the User’s Guide that refer
to transaction logs (-r, —t, -x) are not applicable to the runtime
database engine.

3.6.3 The SQL Central database management program

SQL Central is a graphical database management tool for Windows 95 or for
Windows NT 3.51 or later. SQL Central is the recommended tool for carrying
out the tasks described in the following sections, including the following:

* Creating and maintaining databases.
» Backing up databases.

* Managing transaction log files.

* Working with compressed databases.

27

» Working with read-only databases.
» Compacting databases by unloading and reloading.

3.6.4 The Interactive SQL utility

ISQL (Interactive SQL) is an application for sending SQL statements to
database engines.

If you are not able to run SQL Central to manage your database because of
operating system limitations, ISQL can act as a database administration tool.
Although all the other utilities listed here can be run separately, they can also be
run from ISQL for OS/2 and Windows 3.x. Select Database Tools from the
Window menu in the Windows 3.x, or OS/2 operating systems, or use the
DBTOOL statement.

3.6.5 SQL Anywhere administration utilities

For a complete description of each of the utilities that come with your SQL
Anywhere package, see the chapter "SQL Anywhere Components” on page 679.
You can access the utilities from SQL Central, which is the recommended tool
for managing SQL Anywhere databases, from ISQL, or as command-line
utilities.

Stopping a database server

The stop utility stops a running database server or SQL Anywhere Client.

Creating and maintaining databases

The initialization utility is the tool for initializing (creating) a new database. If
you wish to use a customized sorting and comparison order (collation) for a new
database, you need to use the collation utility.

SQL Anywhere also contains tools for modifying and inspecting database files,
log files, and write files. The erase utility erases a database file, log file, or write
file. The database information utility provides information about a database file
or write file.

The log name utility displays or changes the name of the transaction log.

Backing up databases

The backup utility is a tool for performing full or incremental online backup of
databases. Transaction logs are a record of all changes made to a database, and

28

An Overview of SQL Anywhere

are an important part of database backups. Transaction logs can be translated
into ASCII SQL command file form by the log translation utility as part of
recovery from some forms of database failure, and applied to a copy of the
database made at the time the transaction log was started to restore the database.

The validation utility checks the validity of all indexes on a database table, and
should be used in conjunction with backups to maintain the integrity of
information in a database.

Working with compressed databases

A database file can be compressed using the compression utility, and the
compressed file can be expanded using the uncompression utility. Compressed
database files are usually 40 to 60 percent of their original size.

Compressed databases are useful in situations where file space is limited. The
SQL Anywhere database engine is not able to update compressed database files
directly, however, and so compressed databases need to be used in conjunction
with a write file created with the write file utility.

Working with read-only databases

There are some situations where it is necessary to work with databases that SQL
Anywhere cannot modify directly: read-only databases. Database provided on
CD-ROM are a common class of read-only database. A write file, managed by
the DBWRITE tool, provide a method of working with read-only databases.

Compressed databases are read-only databases. If you wish to test new
applications without modifying a production database, a write file is a useful
alternative.

All changes made to a read-only database are made instead to a write file,
leaving the master database unchanged. The SQL Anywhere standalone engine
and network server also produce a transaction log, which maintains records of all
changes made to the write file. If, at a later point, you wish to apply the changes
in the write file to the master database, you can do this by applying the
transaction log to the original database using the log translation utility.

Compacting database files

The size of a database file does not decrease when rows are deleted (although
future insertions will use the space freed by the deleted rows). You can rebuild
a database in order to reclaim the disk space associated with deleted rows.

The first step in rebuilding a database is to unload the database using the unload
utility. This program creates a text command file named reload.sql. This
command file may be run from ISQL to rebuild the database from scratch.

29

30

The REBUILD batch or command file (not available in the Windows 3.x version
of SQL Anywhere) automates the process of rebuilding a database.

Upgrading databases

The upgrade utility is a tool for upgrading databases made using earlier versions
of SQL Anywhere to SQL Anywhere version 5.0 format. For information about
upgrading databases, see "The DBUPGRAD command-line utility" on page 737.

.
o
.

Chapter 4

Managing Databases With SQL
Central

About this chapter

This chapter introduces the SQL Central database management tool. SQL
Central requires Windows 95, or Windows NT 3.51 or later.

This chapter provides an overview of tasks you can carry out with SQL Central,
and a brief introduction to using SQL Central.

Detailed instructions on using SQL Central are available in the SQL Central
online help. The online help is arranged as a set of How To. . . windows
leading you step by step through database management tasks. In addition,
context sensitive help is available to explain the different interface elements.

SQL Central is designed to be easy to use and faithful to the Windows 95 user
interface. If you are familiar with Windows 95 applications such as the
Explorer, you may want to simply start SQL Central and explore its capabilities
using the sample database.

Contents

* "SQL Central and database management" on the next page.

» "Navigating the main SQL Central window" on the next page.
* "Adding a table to a database" on page 38.

* "Viewing and editing procedures" on page 43.

* "Managing users and groups" on page 45.

» "Backing up a database using SQL Central" on page 48.

» "Using the SQL Central online help" on page 49.

33

Tutorials

4.1 SQL Central and database management

SQL Central is a database management tool. Database administration tasks are
of two kinds:

* Tasks carried out by sending SQL statements to the database engine.
* Tasks carried out by SQL Anywhere utilities.

SQL Central provides an easy-to-use interface for both these kinds of tasks. For
users not running Windows 95 or Windows NT 3.5.1 or later, all the tasks you
can carry out with SQL Central can be carried out using ISQL to send SQL
statements to the database engine or server, and using the command-line
versions of the SQL Anywhere utilities. For users with Windows 95 or NT
access, SQL Central will make your database administration tasks easier and
more efficient.

4.2 Navigating the main SQL Central window

This tutorial introduces the SQL Central user interface. It also describes how to
start SQL Central, how to connect to a database, and how to view a database
schema in SQL Central.

After completing the tutorial you should feel comfortable exploring SQL
Central’s capabilities by yourself.

4.2.1 Start SQL Central

¢ To start SQL Central in Windows NT, double-click SQL Central in the SQL
Anywhere Program Manager group.

¢ To start SQL Central in Windows 95, select Start > Programs > SQL
Anywhere > SQL Central.

The main SQL Central window appears.

34

Managing Databases With SQL Central

L Central - SQL Central

‘(@ Database Utilities &8 Database Utilities

The main SQL Central window is very similar in design to the Windows 95
Explorer. The main window is split into two panels. The left panel displays a
tree view of the current servers and the schema for one or more databases: it
holds each container in a database. A container is a database object that contains
another database object.

The right panel displays the contents of the currently selected container. The
contents are displayed in one of several views: Large Icons, Small Icons, List,
and Details. You can switch among these views by clicking the buttons on the
Tool Bar immediately below the window menu.

4.2.2 Connecting to a database from SQL Central

This section describes how to connect to the sample database using the user ID
DBA and the password SQL.

To connect to the sample database:

1. Start the sademo.db database by double-clicking the sample database in
the SQL Anywhere program group.

2. Select Connect from the Tools menu or click the connect button, second
from the left of the SQL Central toolbar.

3. Enter the user ID DBA and the password SQL, and click OK.

35

Tutorials

Sadeino- 5L Centra[—

g SAL Central
S8 Database Utilities

§ sademo (dba)

You can save connection parameters you use repeatedly as connection profiles
to avoid retyping them each time. For information about connection profiles, see
the SQL Central online help.

4.2.3 Viewing a database schema

The database schema is displayed as a hierarchy of containers and their contents.
This section describes how to view the schema of a database.

Expanding a database container

¢ Click the server container in the left panel of the SQL Central window. The
databases running on that server are shown in the right panel.

Clicking a container in the left panel selects the container. The right panel
then shows the contents of the selected container. In this case the server
container holds just one database.

¢ Double-click the server container in the left panel, then double-click the
database container underneath it. This expands the database container.

Double-clicking a container in the left panel both selects the container and
toggles the left panel between an expanded view and an unexpanded view. In
the expanded view the left panel shows other container objects held inside the
container. In the unexpanded view these are not shown.

36

Managing Databases With SQL Central

Central
{8 Database Utilities
3 sademo
& Stetistics

@ Stored Procedures
@8 Users & Groups
{8 User-defined Data Types
& SOLRemote
{8 DB Spaces

~@3 Connected Users

Only container objects are shown in the left panel. Objects that do not contain

Stored Procedures
Users & Groups
User-defined Data T...
SQOL Remote

DB Spaces
Connected Users

other objects appear in the right panel when their container is selected in the left
panel, but never appear in the left panel.

Viewing the tables in a database

The following steps take you through the contents of the table folder in a

database container.

To examine the tables in a database:

1. If the database container in the left panel is not already expanded, click the
sample database to expand it.

2. Double-click the Tables folder in the left panel. The list of tables in the

database appears.

3. Each table is itself a container. Double-click one of the tables in the left
panel to show the folders it contains. There are separate folders for the

table columns, foreign key relations, indexes, and triggers.

4. Double-click each of the folders in turn in the left panel to show its

contents in the right panel.

37

Tutorials

Tables
Views
Stored Procedures
Users & Groups
User-defined Data Types
-2 contact SOL Remote
E! customer DB Spaces
2% department Connected Users
w88 employee
fin_code
fin_data
-2 mytable
product
H i sales_order
#-2 sales_order_items
-4 Views
{9 Stored Procedures
188 Users & Groups
{8 User-defined Deta Types
88 SOL Remote
- DB Spaces
&8 Connected Users

You can navigate a database by clicking or double-clicking in either panel.
Explore the contents of the other folders in the database: there are separate
folders for tables, views, stored procedures (including user-defined functions),
user & groups, user-defined data types, SQL Remote replication administration,
and DB Spaces.

You should explore the sample database until you are comfortable locating
database objects in the SQL Central main window.

4.3 Adding a table to a database

38

This tutorial takes you through adding a table to the sample database. This task
includes adding columns to an existing table.

The tutorial covers the following interface skills:

 Using template icons to add new objects.
* Using property sheets to add new object properties.
* Using drag-and-drop to add new objects.

To add a table to your database, you first create an empty table, and then add
columns to it.

Managing Databases With SQL Central

In this tutorial, we create a table describing the different offices for the company.

4.3.1 Create an empty table

The first step in adding a table to a database is to create a table with no columns.
Once the table object is created, you can add columns to it.

To create an empty table:
1. Click the sample database in the left panel.

2. Double-click Tables in the right panel.
3. Double-click Add Table in the right panel. New Table Properties appears.

4. Type the name office in the top text box. This is the name of the table, and
must be supplied for each table.

5. Type the comment "Company offices information" in the Comment text
box. Comments are optional.

6. Click OK to create the table. New Table Properties disappears, and the
office table is added in the right panel.

The office table has an owner (in this case, DBA), but no columns and no data.
The next step is to add columns to the office table. SQL Central provides more
than one way of adding columns. The following section describes how to add a
column using the Add Column icon.

39

Tutorials

4.3.2 Adding a column to a table using Add Column

This section describes how to add columns to a table. We add a column named
office_id to the table. This column holds a numerical ID for each office.

To add a new column to a table:

1. Inthe left panel, click the office table. You may have to expand the
database container and the Tables folder to do this.

2. In the right panel, double-click the Columns folder. The right panel then
shows just Add Column.

3. In the right panel, double-click Add Column. New Column Properties

appears.

4. Type office_id in the Name text box on the general tab.

5. On the Type tabe, set the column Type to SMALLINT. You do not need to
add any Extended attributes,

6. Click OK to add the column. New Column Properties disappears, and the
office_id column is added in the right panel.

The column is now present in the database, although it has no data. SQL Central
does not include facilities for data entry.

Notes
« In some cases, you may want to add a column that is similar to an existing

column in some other table. SQL Central provides a simple way to do this,
which is described in the following section.

40

Managing Databases With SQL Central

* Property sheets are used extensively in SQL Central. For example, later
lessons in the tutorial show property sheets for users, stored procedures, and
individual columns.

* Add Object icons are used to add other objects besides tables to a database.
Stored procedures, triggers, indexes, users, user groups, and columns are
among the database objects that you can add with an Add Object icon.

4.3.3 Dragging a column to a new table

Notes

This section describes how to add a column to hold the address of each office.
The customer table already has an address column, and we can add a column to
the office table that has the same attributes.

To drag a column to a table:

1. In the left panel, click the customer table. You may have to expand the
database container and the Tables folder to do this.

2. Inthe right panel, double-click the Columns folder. The right panel shows
the columns in the customer table.

3. Click the address column in the right panel, and drag it to the office table
in the left panel. This adds a new column to the office table, with the same
attributes as the address column of the customer table.

4. To see the new column, double-click the office table in the left panel, then
double click the Columns folder in the right panel.

5. To see the attributes of the address column, double-click the address
column in the right panel. Address Properties appears.

6. Change the name of the column to office_address by typing this in the
Name text box. This modification applies to the address column of the
office table only. Once a column has been copied there is no longer any
connection between the original column and the new column.

Drag and drop is available for several kinds of database management task. For
example, you can add users to user groups by dragging, or drag a table to
another table to create a foreign key relationship. For a complete list of
drag-and-drop operations, look up drag and drop summary in the SQL Central
online help.

4

Tutorials

4.3.4 Creating a primary key

~ This section describes how to create a primary key for the office table.

To make a column a primary key:

1. In the left panel, click the office table. You may have to expand the
database container and the Tables folder to do this.

2. In the right panel, double-click the Columns folder. The right panel shows
the columns in the office table.

3. In the right panel, use the right mouse button to click the office_id column.
A pop-up menu appears, showing operations you can carry out on the
column.

4. Click Set as Primary Key to make the office_id column the primary key for
the office table.

Using Table Properties to assign primary keys:

1. Using the right mouse button, click the office table in the left panel, and
choose Properties from the pop-up menu. Office Properties appears.

2. Click the Primary Key tab. You can select columns from the Available
Columns list and press Add to add the selected columns to the Columns in
the Primary Key list.

3. Click Cancel to dismiss Office Properties without making any changes to
the office table.

42

Managing Databases With SQL Central

Notes

 Pop-up menus are available throughout the SQL Central interface by clicking
on objects or in windows using the right mouse button. Showing an object’s
pop-up menu is a convenient way of finding out what actions can be carried
out on an object.

4.3.5 Deleting tables using SQL Central

To restore the database to its original state, you can drop the office table from
the database:

1. Using the right mouse button, click the office table.
2. Select Delete from the pop-up menu.

4.4 Viewing and editing procedures

Stored procedures are kept in their own folder under the database. This tutorial
shows how to view and alter the contents of a procedure, and how to create new
procedures.

4.4.1 Viewing a procedure

There are several stored procedures included in the sample database.

To view the contents of a procedure:

1. Select the Stored Procedures folder from the sample database in the left
panel.

2. Double-click sp_customer_list in the right panel. The SQL Central editor
appears, showing the text of the procedure as it was entered.

43

Tutorials

~ Procedure 'sp_customer_list - SQL Central

lter procedure
Isp_customer_list()
result(id integer, company_name char(35))
begin

select id,company_name from customer
lend

A call to this procedure returns a set of customer IDs and company names
from the Customer table.

Viewing procedures in Watcom-SQL or Transact-SQL

SQL Anywhere supports two alternative syntaxes for stored procedures. The
native SQL Anywhere syntax is based on the ISO draft standard. SQL
Anywhere also supports the Sybase Transact-SQL syntax. You can enter
procedures in either syntax, and SQL Anywhere can automatically translate
between the two syntaxes.

Not all procedure statements may translate. Untranslated statements appear as
comments in the translated procedure.

To view the alternative syntaxes of a procedure:

1. With the right mouse button, click on the sp_customer_list procedure. A
pOp-up menu appears.

2. Click Open to view the procedure in the syntax in which it was entered.
This is the syntax in which the procedure is stored in the database.

3. Click Open as SQL Anywhere to view the procedure in Watcom-SQL
syntax.

4. Click Open as Transact-SQL to view the procedure in Transact-SQL
syntax.

Notes

» The SQL Central editor is used to display and create views and triggers as well
as stored procedures.

44

Managing Databases With SQL Central

Setting permissions on procedures

Stored procedures have permissions associated with them. In order to execute a
procedure you either need to be granted permission to execute a procedure, or

you need to be a member of a user group that has permission to execute the
procedure.

To see and change the permissions on a procedure:

1. Using the right mouse button, click on the sp_customer_list procedure. A
pop-up menu appears.
2. Select Properties from this menu. Sp_customer_list Properties appears.

sp customer | t Propert

3. Click the Permissions tab to see which user IDs have been granted
permissions on this procedure. Currently none do, as the only user for the
sample database is DBA, who automatically has execute permissions as
owner of the procedure.

4.5 Managing users and groups

Users are objects within the database. SQL Anywhere allows you to create
individual users of the database and also to create groups of users. This tutorial

shows you how to create a group for the database, create an individual user, and
make the user a member of the group.

45

Tutorials

4.5.1 Adding a group to the database

In this section we add a sales group to the sample database.

To add a group to a database:

1. Expand the sample database in the left panel.
. Click the Users & Groups folder in the left panel.
3. Double-click Add Group in the right panel. The New Group Wizard
appears.

reate a New Grou

4. Type the name sales in the top text box. This is the name of the user group.

5. Enter a password (for example, sales) and click Next to show the following
page of the wizard.

6. The sales group appears in both panels. Groups are container objects, and
so appear in the left panel.

4.5.2 Adding a user to the database

This section describes how to add a user to a database.

To add a new user to the sample database:
1. Select the sample database in the left panel.

2. Click the Users & Groups folder in the left panel.
3. Double-click Add User in the right panel. The New User Wizard appears.

46

Managing Databases With SQL Central

Type the name Sandy in the top text box. This is the user ID for the new
user.

Type a password, and confirm it by retyping it. For example, you could
use the password Sandy. Click OK to confirm the entries.

An icon appears in the right panel, showing the new user. There is no icon
in the left panel, as individual user ID’s are not containers.

4.5.3 Adding a user to a group

SQL Central provides two ways to add a user to a group. You can use the
individual user’s Properties sheet, which has a Membership tab. However, it is
often more convenient to use a drag and drop method.

In this section we add two users to a group using drag and drop.

To add users to a group:

1.

Qp W

Ensure that the sales group is shown in the left panel, and that the users
DBA and Sandy are shown in the right panel.

Click Sandy to select this user.

While holding down the Ctrl key, click DBA to select this user as well.
Drag the users to the sales group in the left panel.

Double-click the sales group in the left panel to show its members.

To restore the database to its original state, you can delete the sales group and
the user Sandy. For each of the two icons:

47

Tutorials

1. Using the right mouse button, click the icon.
2. Select Delete from the pop-up menu.

4.6 Backing up a database using SQL Central

SQL Central includes a set of database utilities for carrying out common
database administration tasks. Wizards are provided to guide you step-by-step
through each task.

To see all the database utilities provided with SQL Central, click the Database
Utilities folder at the top of the left window. A list of the utilities appears in the
right panel.

“Database Utilities - SQL Central

8. SOL Central
8§ Database Utilities ¥ Create Database Create a SQL Anywhere Databasg
3 sademo % Upgrade Database Upgrade from a Watcom 4.0 datalg

& Statistics up Datat Backup a SQL Anywhere Databas|
& @ sademo (dba) % Compress Database Compress a SQL Anywhere Dataly

-3 Tables ¥ Uncompress Database Uncompress a Compressed SQL
69 Views Create Write File Create a Write File for a SQL Anyw
&9 Stored Procedures & Translate Log Translate a SQL Anywhere Transg

% Change Log File Change a SQL Anywhere Databag
Users & Groups d
g User-defined EalaTy s ,Unload Database Unload a SQL Anywhere Databas
588 SQL Remote P i Extract a Database Create and synchronize a remote
& DB Spaces % Erase Database Erase all or selected components

@3 Connected Users

Some of the utilities are used on database files, while others can be used with
running databases. You can access utilities that can be used on a running
database from a popup menu on the database icon. In this lesson, we back up the
sample database.

To back up a running database

1. Click the sample database using the right mouse button, and select Backup
from the popup menu. The Backup Wizard appears.

48

Managing Databases With SQL Central

2. Type a directory in the text box indicating where you wish to back up the
database to. As this is a tutorial only, you may wish to choose a temporary
file directory such as c:\temp.

3. Check the Main Database File and Transaction Log File options, and
uncheck the Database Write File option. Then click Next to take you to the
next page of the Wizard.

4. Select the bottom option button from the three options presented, and click
Next to take you to the next page of the Wizard.

5. Review the choices you have made, and click Finish to back up the
database. A window displays the progress of the backup.

Wizards are available for several other database administration tasks. You may
wish to try creating a database by selecting the Database Utilities folder in the
left panel and then double-clicking the Create Database tool in the right panel.

4.7 Using the SQL Central online help

The main documentation for SQL Central is available as online help. This
tutorial introduces you to the SQL Central online help.

The online help is presented as a set of zopics. You can find topics about a
subject of interest using the Contents, the Index, or by searching the text of the
online Help.

49

Tutorials

4.7.1 Using the online help Contents

To see the SQL Central online help contents:

1. Select Help Topics from the SQL Central Help menu. The SQL Central
online help Help Topics window appears.

2. The Help Topics window has three tabs: Contents, Index, and Find. Click
the Contents tab.

dlntrocuction
@ Connecting to a Database
@ Using the Main Window
@ Managing Servers
@ Managing Databases
L 3 Managing Tables
@ Managing Views

Managing Stored Procedures & Functions

@ Managing Users & Groups

[3 Managing SQL Remote Replication
@ Managing DB Spaces

@ Managing Connected Users

@ Using ISQL with SQL Central

L 3 Other Topics

The online help Contents are displayed as a set of books. To open a book, click
the book and click Open. The following example illustrates the organization of
the help topics.

To find out how to add a group:

1. With the Contents tab showing on the Help Topics window, click
Managing Users & Groups to open the book.
2. Click Creating A New User Or Group to display the topic.

Notes

» Many topics have a Related Topics link at the end of the topic, which can take
you to related topics in the SQL Central online help and in the online SQL
Anywhere User’s Guide.

* You can use the Browse buttons (with arrows) to take you back and forward
through related topics.

50

* You can configure some aspects of the appearance of the online help by
clicking Options.

* Clicking Help Topics opens the Help Topics window again.

* Clicking SQL Anywhere 5.0 Help opens the online SQL Anywhere User’s
Guide.

You should spend some time browsing through the Contents window to
familiarize yourself with the online help organization.

4.7.2 Using the online help Index

Notes

The Index provides an alternative way to search for information in the online
Help.

This section shows how to find information about creating users using the index.

To find a topic using the Index:

1. Open the Help Topics window, and click the Index tab.
Type "users" in the box numbered 1. In box 2, the Users & Groups index
entry is highlighted.

3. The index is a two-level index. Click Creating under Users & Groups, and
click Display to show the topic.

* If there is more than one topic indexed under the entry you display, a list of
topics is displayed.

4.7.3 Searching the text of the online help

If you cannot find the information you are looking for using the Contents or the
Index, you may want to try searching the text of the online Help.

To find a topic by searching text:

1. Open the Help Topics window, and click the Find tab.

2. When you have built your word list, type "user" in the box numbered 1. As
you type, a list of matching words is shown in the box numbered 2.

3. Click user in box 2.

4. Click Creating A New User Or Group in the topic list in box number 3, and
click Display to show the topic.

51

Tutorials

52

Chapter 5

Using ISQL

About this chapter

This chapter discusses how to run ISQL (Interactive SQL) under Microsoft
Windows, Microsoft Windows NT, or IBM OS/2. Ideally, you should run the
software on your computer as you work through this chapter.

This chapter presents the various facilities offered by the ISQL environment.
"Selecting Data From Database Tables" on page 75 starts an in-depth tutorial of
the SQL language and the SQL Anywhere database engine.

In order to run the software, it must first be installed on your computer. See the
installation instructions in the SQL Anywhere Read Me First booklet.

Contents

* "The SQL Anywhere program group” on the next page.
* "Starting the SQL Anywhere software" on the next page.
* "Connecting to the sample database from ISQL" on page 55.
* "Obtaining help from ISQL" on page 56.

* "The ISQL command window" on page 56.

* "Leaving ISQL" on page 57.

* "Displaying data in ISQL" on page 57.

* "Command recall in ISQL" on page 58.

* "Function keys" on page 59.

* "Aborting an ISQL command" on page 60.

* "What next?" on page 61.

53

Tutorials

5.1 The SQL Anywhere program group

After the software is installed, you will have a SQL Anywhere program group,
containing icons for the components of the SQL Anywhere software (the SQL
Anywhere client installation gives a subset of these icons). The program group
for Windows 95 is displayed inthe figure:

Standalone Server Sample 1SQL Sybase SQL

Sample Database Anywhere
Database . . Manual
m [k}
el

Client Sample 0DBC Unlnstall

Administrator

5.2 Starting the SQL Anywhere software

54

Start the database engine on the sample database by double clicking on the SQL
Anywhere icon labeled Standalone Sample Database.

The SQL Anywhere window appears displaying some startup information. After
a few seconds, the window automatically reduces to an icon on the bottom of the
screen. If a message box with an error appears, then you should repeat the
installation process discussed in the SOL Anywhere Read Me First booklet.

Once the database engine is running, start ISQL by double clicking on the ISQL
icon. The ISQL window is displayed.

Using ISQL

Statistics

5.3 Connecting to the sample database from ISQL

When you start ISQL, it is not connected to any database. When a database is
running, ISQL displays the SQL Anywhere Log On window.

You must enter a number of connection parameters in the Connection window.
These include a user identification (user ID), and password.

User ID For the sample database, use the user ID dba.

Password

The password for the dba user ID is sql.

The password does not appear when you type it. This prevents
someone else from seeing your password.

55

Tutorials

The connect dialog contains a button labeled More>>. Clicking More reveals a
larger dialog box which contains more options for connecting to databases.
These options are not needed for connecting to a database when only one
database is running. For the purposes of this tutorial, the options revealed by
clicking More are not needed.

After entering the user ID and password, press Enter (or click OK) to connect to
the sample database. If you have made typing mistakes or the sample database is
not found, an error message appears. You can use the tab key to move to the
field in error and correct the problem using the cursor keys («—, —) and the
backspace key (¢«).

After connecting to the database, the ISQL statistics window displays the
message "Connected to database".

5.4 Obtaining help from ISQL

Help is available by pressing the F1 key, or by choosing Help from the Help
menu. The help system can also be activated with the HELP command. The
help files contain help on many topics—most of this manual is contained in the
help files. For more information on using help, choose Using Help from the
Help menu.

5.5 The ISQL command window

56

The Command window appears at the bottom of the ISQL screen. Itis a
standard edit control for typing ISQL commands. If more lines are typed than
will fit in this window, the window automatically scrolls. You can scroll the
window using the cursor keys or the scroll bar on the right side of the window.
This window can also be made larger and maximized to full screen size in the
standard Windows or OS/2 fashion. See the Microsoft Windows User’s Guide
for more information on controlling windows and working with text.

Commands are executed by pressing the execute key (F9) or you can click on
the Execute button.

Multiple commands can be entered at once by separating them with semicolons.
Commands can be stored to an ASCII file or loaded from an ASCII file by
choosing Save or Open from the File menu.

Using ISQL

5.6 Leaving ISQL

When you have finished working with ISQL, the EXIT command returns you to
the operating system (or choose Exit from the File menu). You can then stop
the database engine by clicking on the SQL Anywhere icon and selecting the
Close menu item.

If you leave ISQL now, you will have to restart ISQL to continue with the
tutorial.

5.7 Displaying data in ISQL

Notes

One of the principal uses of ISQL is to look at information in databases.

The database used in this tutorial is for a fictional company. The sample
database contains information about employees, departments, sales orders, and
SO on.

All this information is organized into a number of tables, consisting of rows and
columns.

You display information from a database using the SELECT statement. The
following example shows the command to type in the ISQL command window.
Once you have typed the command, you must click Execute to carry out the
command. The example displays the first several columns and rows of the
results of the query, which are displayed in the ISQL data window. The format
is used throughout this manual.

List all the columns and rows of the employee table:

SELECT *
FROM employee

emp_id manager id emp_lname emp_fname
102 501 Fran Whitney
105 501 Matthew Cobb

129 902 Philip Chin

148 1293 Julie Jordan

160 501 Robert Breault

* SQL statements are case insensitive. SELECT is the same as select is the
same as Select. In the examples, SQL keywords are shown in upper case, but
you do not have to type them in upper case.

* SQL statements can be typed on more than one line. You can type the
statements all on one line, or break them over several lines as you wish. Some

57

Tutorials

SQL statements, such as the SELECT statement, consist of several parts,
called clauses. In many examples, each clause is placed on a separate line, but
you do not have to type them this way.

The ISQL Data window displays a set of rows and columns containing
information about the employees. Each row contains information about one
employee, and each column contains a particular piece of information for all
employees.

5.7.2 Scrolling the data window

When you type the command

SELECT * FROM employee

in the ISQL command window, the visible portion of the ISQL data window
cannot hold the entire employee table.

The visible portion of the data window does not display all the information about
each employee, and does not display the entire list of employees.

To see more information about each employee (that is, other columns) you use
the scroll bar at the bottom of the data window. This is a standard Windows or
0S/2 scroll bar.

To see more information on other employees (that is, other rows), use the scroll
bar to the right of the data window. The employee table in the sample database
has information on about 75 employees.

Sometimes, the vertical scroll bar behaves slightly differently than standard
scroll bars, as the number of rows in the result may be unknown. In this case, a
guess as to the number of rows is used. If ISQL determines that its guess is
wrong, the guess is adjusted and the slider "jumps".

5.8 Command recall in ISQL

58

Let’s execute another command. Type the following and then press F9:

SELECT * FROM department

The contents of the department database table are displayed in the Data
window. As you execute commands with ISQL, they are saved in a command
history. To recall commands, choose Recall from the Command menu. This
activates the command recall window.

Using ISQL

The command recall window displays the first line of the last 15 commands
executed. Use the cursor up and down keys (T and) to scroll through the
commands.

Position the cursor on the first command that you executed, which was:

SELECT *
FROM employee

and press the Enter key. The cursor returns to the command window with the
selected command in it. You can now re-execute that command or modify it to
make a new command.

The following keys can also be used to recall previous commands:

Ctrl+R bring up the command recall window.

Ctrl+P cycles backwards through previously executed commands.
Retrieved commands are placed into the command
window.

Ctri+N cycles forward through previously executed commands.

5.9 Function keys

ISQL uses some function keys and special keys as follows:

FI Help.

F5 Move data to the left by one column in the data window.
Shift+F5 Move data to the left by one character.

F6 Move data to the right by one column.

59

Tutorials

Shift+F6 Move data to the right by one character.

F7 Display a list of the tables in the database. The cursor up and
down keys can be used to scroll through the table names changing
the highlighted table name. With the list displayed, pressing
Enter will insert the current table name into the command
window at the cursor position. The F7 key can be used while the
table list is displayed, and a list of columns will be displayed for
the highlighted table. Again, Enter can be used to select the
highlighted column name and put it into the command window at
the cursor position.

F9 Execute the command that is in the command window. This
operation can also be performed with the mouse by clicking
Execute.

FI0 Activate the menus.

PgUp Move data up a page.

PgDn Move data down a page.

Ctrl+PgUp Move to top of data.

Ctrl+PgDn Move to bottom of data.

5.10 Aborting an ISQL command

The Stop button is used to cancel a command.

A Stop operation stops current processing and prompts for the next command. If
a command file was being processed, you are prompted for an action to take
(Stop command file, Continue, or Exit ISQL). These actions can be controlled
with the ISQL ON_ERROR option (see "SET OPTION Statement" on page
989).

When an abort is detected, one of three different errors will be reported
depending upon when the abort is detected.

1. If the abort is detected when ISQL is processing the request (as opposed to
the database engine), then the following message is displayed:

ISQL command terminated by user

ISQL stops processing immediately and the database transaction is left
alone.

60

2. If the abort is detected while the database engine is processing a data
definition command (CREATE, DROP, ALTER, etc.), the following
message is displayed:

Terminated by user -- transaction rolled back

Since data definition commands all perform a COMMIT automatically
before the command starts, the effect of the ROLLBACK is to just cancel
the current command.

This message also occurs when the database engine is running in bulk
operations mode executing a command that modifies the database
(INSERT, UPDATE, and DELETE). In this case, ROLLBACK cancels
not only the current command, but everything that has been done since the
last COMMIT. In some cases, it may take a considerable amount of time
for the database engine to perform the automatic ROLLBACK.

3. If the abort is detected by the database engine while processing a standard
data manipulation command (SELECT, INSERT, DELETE, etc.) and the
engine is not running in bulk operations mode, then the following message
is displayed.

Statement interrupted by user

The effects of the current command are undone, but the rest of the
transaction is left intact.

5.11 What next?

Once you are familiar with the basics of ISQL, you should proceed to "Selecting
Data From Database Tables" on page 75 for a tutorial on the SQL language.

61

Tutorials

62

Chapter 6

Using ISQL for DOS, QNX, or
NetWare

About this chapter

This chapter discusses how to run ISQL (Interactive SQL) under DOS, QNX, or
NetWare.

Ideally, you should actually run the software on your computer as you work
through this chapter. This chapter presents the various facilities offered by the
ISQL environment. "Tutorials" on page 31 starts an in-depth tutorial of the SQL
language and the SQL Anywhere database engine.

In order to run the software, it must first be installed on your computer. See the
installation instructions in the SQL Anywhere Read Me First booklet.

Contents

» "Tutorial files" on the next page.

 "Starting the SQL Anywhere software" on the next page.
* "Connecting to the sample database from ISQL" on page 65.
* "ISQL menu selection" on page 65.

* "Obtaining help from ISQL" on page 66.

* "The ISQL command window" on page 66.

* "Leaving ISQL" on page 66.

 "Displaying data in ISQL" on page 67.

¢ "Command window keys in ISQL" on page 68.

* "Scrolling the data window" on page 69.

¢ "Command recall in ISQL" on page 70.

* "Function keys" on page 59.

* "Aborting an ISQL command" on page 72.

¢ "What next?" on page 73.

63

Tutorials

6.1 Tutorial files

DOS:

First, you should be in the subdirectory containing the SQL Anywhere software.
This directory is chosen at installation time (usually c:\sqlany50). The
commands

c:
cd \sglany50\dos

will get you there. The sample database, sademo.db, will be located in the
parent directory (\sqlany50).

Alternatively, you may want to copy the sample database used in this tutorial
into a different working directory. The only file you need to copy is:
sademo.db. In this case, you need to have SQL Anywhere in your PATH (this
is done for you at installation time).

QNX

You should copy the sample database to your working directory or create a link
to it. For example,

cp /usr/lib/sqlany50/sample/sademo.db .
or

1In /usr/lib/sqglany50/sample/sademo.db .

6.2 Starting the SQL Anywhere software

64

To start ISQL in DOS or QNX, type the command:
isql
To start ISQL on a NetWare machine, type the command:

load isqgl.nlm

This command loads ISQL.

Using ISQL for DOS, QNX, or NetWare

6.3 Connecting to the sample database from ISQL

ISQL initially is not connected to any database. To connect, type the command

connect

and press the Execute key (F9).

ISQL prompts you for a number of connection parameters. These include a user
identification (user ID), password and database file

Type the user ID DBA, then press the Tab key to move to the next field.

Type in the password SQL. The password does not appear when you type it.
This prevents someone else from seeing your password.

Press the Tab key again to move to the database file field and enter sademo.db.
This is the sample database that you will use in the tutorial.

Now press the Enter key (or click the OK button using a mouse) to connect to
the database. If you have made typing mistakes or the sample database is not
found, an error message will appear. You can use the tab key to move to the
field in error and correct the problem using the cursor keys («—, —) and the
backspace key (¢«-). If you have typed everything correctly, the problem could
be that the database sademo.db is not in your current directory. You should
return to the beginning of this chapter, making sure that the software has been
installed correctly and that you have followed the instructions in "Tutorial files"
on the previous page.

If you successfully connect to the database, the statistics window displays the
message "Connected to database".

6.4 ISQL menu selection

Throughout this book, you will be instructed to choose items from pull-down
menus. The pull-down menus are located at the top of the screen.

To illustrate their use, we will choose Help from the Help menu.

To choose a menu item using the keyboard:
* Press the Alt key.
* Press the highlighted letter in the name of the menu (H). The Help menu will

"pull down".
* Press the highlighted letter in the name of the item (H).

65

Tutorials

To choose a menu item using the mouse:

« Position the mouse on the name of a pull-down menu (Help).

e Press and release (click) the left mouse button. The Help menu will "pull
down".

* Position the mouse on the correct item and click the left mouse button again.

To leave the Help system, press the Esc key, or click on the Cancel button.

6.5 Obtaining help from ISQL

Help is available by pressing the F1 key, or by choosing Help from the Help
menu. The help system can also be activated with the HELP command. The
help files contain help on many topics — most of this manual is contained in the
help files.

6.6 The ISQL command window

The command window appears at the bottom of the screen. It has four lines for
typing ISQL commands. If more than 4 lines are typed, the window scrolls
automatically. You can scroll the window using the cursor keys or the scroll bar
on the right side of the window. This window can also be made larger and
zoomed to full screen size by choosing the appropriate item from the Command
menu.

Grow Window (Ctrl+G) to grow window one line up to a maximum of
half the screen.

Shrink Window (Ctrl+S) to shrink window one line down to a minimum of
3 lines.

Zoom Window (Ctrl+Z) to zoom window to full screen and back again.

6.7 Leaving ISQL

66

When you have finished working with ISQL, the EXIT command returns you to
the operating system (or choose Exit from the File menu). Since ISQL started
the database engine, the database engine is automatically stopped by ISQL on
exit. If you exit from ISQL, you will have to start ISQL again to continue with
the tutorial.

Using ISQL for DOS, QNX, or NetWare

6.8 Displaying data in ISQL

Notes

One of the principal uses of ISQL is to look at information in databases.

The database used in this tutorial is for a fictional company. The sample
database contains information about employees, departments, sales orders, and
SO on.

All this information is organized into a number of tables, consisting of rows and
columns.

You display information from a database using the SELECT statement. The
following example shows the command to type in the ISQL command window.
Once you have typed the command, you must click Execute to carry out the
command. The example displays the first several columns and rows of the
results of the query, which are displayed in the ISQL data window. The format
is used throughout this manual.

List all the columns and rows of the employee table:

SELECT *
FROM employee

emp_id manager_id emp_lname emp_ fname
102 501 Fran Whitney
105 501 Matthew Cobb

129 902 Philip Chin

148 1293 Julie Jordan

160 501 Robert Breault

* SQL statements are case insensitive. SELECT is the same as select is the
same as Select. In the examples, SQL keywords are shown in upper case, but
you do not have to type them in upper case.

* SQL statements can be typed on more than one line. You can type the
statements all on one line, or break them over several lines as you wish. Some
SQL statements, such as the SELECT statement, consist of several parts,
called clauses In many examples, each clause is placed on a separate line, but
you do not have to type them this way.

The ISQL Data window displays a set of rows and columns containing
information about the employees. Each row contains information about one
employee, and each column contains a particular piece of information for all
employees.

67

Tutorials

6.9 Command window keys in ISQL

If you make a spelling mistake, you can correct it using the following keys:

68

Cursor Left

Cursor Right
Home
End

Ins

Del

Backspace

Ctrl+End
Enter

Cursor Down

Cursor Up

Esc

(<) moves the cursor left over top of any characters
already typed.

(—) moves the cursor right.
moves the cursor to the start of the line.
moves the cursor past the last character of the line.

toggles Insert mode. When Insert mode is on, the cursor is
different (usually fatter), and any characters typed will be
inserted where the cursor is, pushing characters to the right
of the cursor further to the right.

deletes the character at the cursor, and moves the rest of the
line back to fill the vacant position.

deletes the character immediately to the left of the cursor.
If this key is pressed at the beginning of a line, it will join
the current line to the previous one.

erases from the cursor position to the end of the line.
moves the cursor to the beginning of the next line.

moves the cursor down one line. If you are on the last line
of the command window and there are more lines below
the window, the text will scroll up one line so that you can
see the next line.

moves the cursor up one line. If you are on the first line of
the command window and there are more lines above, the
text will scroll down one line so that you can see the
previous line.

clears the entire command from the command window.

Shift+CursorUp, Shift+CursorDown, Shift+PgUp, Shift+PgDn

used to mark an area (set of lines). This can also be done
by pressing the left mouse button and holding it down
while you drag the mouse over the lines to be marked.

Using ISQL for DOS, QNX, or NetWare

Ctrl+X cuts the marked area to the edit clipboard. The lines are
removed from the current position and can be pasted back
anywhere using the Ctrl+V key combination.

Ctrl+V pastes the contents of the edit clipboard into position
following the current line.

Ctrl+C copies the marked area to the edit clipboard. This is
different than the Ctrl+X key combination in that it does
not delete the marked area. There are also items in the
Edit menu that can be used instead of these key
combinations.

The following keys are also useful shortcut keys, but they will only work on
newer keyboards.

Alt+Ins insert a new line after the current line.
Alt+Del delete the current line.

Commands are executed by pressing the execute key (F9). The right mouse
button also executes the current command.

Multiple commands can be entered at once by separating them with semicolons.
Commands can be stored to an ASCII file or loaded from an ASCII file by
choosing Save or Open from the File menu.

6.10 Scrolling the data window

When you type the command

SELECT * FROM employee

in the ISQL command window, the visible portion of the ISQL data window
cannot hold the entire employee table.

The visible portion of the data window does not display all the information about
each employee, and does not display the entire list of employees.

To see more information about each employee (that is, other columns) you use
the move left and move right operations. These operations can be done by
choosing Left and Right from the Data menu. Alternatively, you can use the F5
and F6 keys (shown in the menu). If your computer has a mouse, you can also
move right by using the scroll bar at the bottom of the data window.

69

Tutorials

The employee table in the sample database has information on 75 employees.
To see more information on other employees (that is, other rows), use the PgDn
and PgUp keys (Page Down and Page Up). Try pressing the PgDn key, and
observe that a new screen full of employees is shown. Continue pressing PgDn
and eventually the screen contains only the column names with no rows.
Pressing PgUp at this point will bring back the last screen full of employees in
the employee table.

If your computer has a mouse, you can also move the information up and down
using the scroll bar on the right side of the screen. Sometimes, this scroll bar
behaves slightly differently than standard scroll bars when the number of rows in
the result is unknown. In this case, a guess as to the number of rows is used.
When ISQL determines that the guess is wrong, it will be adjusted and the slider
"jumps".

The Data menu contains items for moving up and down a line. It also has items
for going to the top and bottom of the query. These actions can also be
performed with Ctrl+PgDn and Ctrl+PgUp. Ctrl+PgDn is actually two keys;
hold down the Ctrl key and press the PgDn key. When you do this, ISQL
displays the last screen of employees in the employee table. Similarly,
Ctrl+PgUp will display the first screen of employees. You can move back to
the original position by using Ctrl+PgUp and then pressing the F5 key until the
Studnum column appears.

The eight keys (PgUp, PgDn, Ctrl+PgUp, Ctrl+PgDn, F5, F6, Shift+F5 and
Shift+F6) can be used at any time there is data in the data window, even if you
are in the middle of typing a new command.

6.11 Command recall in ISQL

70

Let’s execute another command. Type the following and then press F9:

SELECT *
FROM department

The contents of the department database table are displayed in the Data
window. As you execute commands with ISQL, they are saved in a command
history. To recall commands, choose Recall from the Command menu. This
activates the command recall window.

The window displays the first line of the last 15 commands that you have
executed. Use the cursor up and down keys (T and {) to scroll through the
commands. As you do so, the full command appears in the command window at
the bottom of the screen.

Position the cursor on the first command that you executed, which was:

Using ISQL for DOS, QNX, or NetWare

SELECT *

FROM employee

Now press the Enter key. The cursor will return to the command window with
that command in it. You can now re-execute that command or you can modify it
to make a new command.

The following keys can also be used to recall previous commands:

Ctrl+R

Ctrl+P

Ctri+N

bring up the command recall window.
cycles backwards through previously executed commands.
Retrieved commands are placed into the command

window.

cycles forward through previously executed commands.

6.12 Function keys

ISQL uses some function keys and special keys as follows:

F1
F5
Shift+F5
F6
Shift+F6

F7

F9

Help.

Move data to the left by one column in the data window.
Move data to the left by one character.

Move data to the right by one column.

Move data to the right by one character.

Display a list of the tables in the database. The cursor up and
down keys can be used to scroll through the table names changing
the highlighted table name. With the list displayed, pressing
Enter will insert the current table name into the command
window at the cursor position. The F7 key can be used while the
table list is displayed, and a list of columns will be displayed for
the highlighted table. Again, Enter can be used to select the
highlighted column name and put it into the command window at
the cursor position.

Execute the command that is in the command window. This

operation can also be performed with the mouse by pressing the
right mouse button.

A

Tutorials

Fi10 Activate the menus.
PgUp Move data up a page.
PgDn Move data down a page.

Ctrl+PgUp Move to top of data.

Ctrl+PgDn Move to bottom of data.

6.13 Aborting an ISQL command

72

The Ctrl+Break key combination is used to abort a command.

A Stop operation stops current processing and prompts for the next command. If
a command file was being processed, you are prompted for an action to take
(Stop command file, Continue, or Exit ISQL). These actions can be controlled
with the ISQL ON_ERROR option (see "SET OPTION Statement" on page
989).

When an abort is detected, one of three different errors will be reported
depending upon when the abort is detected.

1. If the abort is detected when ISQL is processing the request (as opposed to
the database engine), then the following message is displayed:

ISQL command terminated by user

ISQL stops processing immediately and the database transaction is left
alone.

2. If the abort is detected while the database engine is processing a data
definition command (CREATE, DROP, ALTER, etc.), the following
message is displayed:

Terminated by user -- transaction rolled back

Since data definition commands all perform a COMMIT automatically
before the command starts, the effect of the ROLLBACK is to just cancel
the current command.

This message also occurs when the database engine is running in bulk
operations mode executing a command that modifies the database
(INSERT, UPDATE, and DELETE). In this case, ROLLBACK cancels
not only the current command, but everything that has been done since the
last COMMIT. In some cases, it may take a considerable amount of time
for the database engine to perform the automatic ROLLBACK.

3. If the abort is detected by the database engine while processing a standard
data manipulation command (SELECT, INSERT, DELETE, etc.) and the
engine is not running in bulk operations mode, then the following message
is displayed.

Statement interrupted by user

The effects of the current command are undone, but the rest of the
transaction is left intact.

6.14 What next?

Once you are familiar with the basics of ISQL, you should proceed to "Selecting
Data From Database Tables" on page 75 for a tutorial on the SQL language.

73

Tutorials

74

Chapter 7

Selecting Data From Database Tables

About this chapter

This tutorial introduces the basic SELECT statement. You use the SELECT
statement to retrieve information from databases. SELECT statements are
commonly called queries, because they ask the database engine about the
information in a database.

The SELECT statement is a very versatile command. SELECT statements can
become highly complex in applications retrieving very specific information from
large databases. This tutorial uses only simple SELECT statements: more
advanced queries are described in later tutorials. For more information about the
full syntax of the select statement, see the "SELECT Statement" in the chapter
"Watcom-SQL Language Reference".

Ideally, you should be running the SQL. Anywhere software on your computer
while you read and work through the tutorial lessons.

Each lesson instructs you to type commands into the computer and describes
what you will see on your computer screen. If you cannot run the software as
you read the tutorials, you will still be able to learn about SQL but you will not
have the opportunity to experiment on your own. This tutorial assumes that you
have already started ISQL and connected to the sample database. If you have
not already done so, refer to the chapter that deals with the operating system that
you are using: "Using ISQL for DOS, QNX, or NetWare" on page 63, "Using
ISQL" on page 53 or "Undefined Heading" on page XXX.

Contents

» "Looking at the information in a table" on the next page

* "Ordering query results" on page 77

 "Selecting columns from a table" on page 77

¢ "Selecting rows from a table" on page 78

» "Comparing dates in queries" on page 79

* "Compound search conditions in the WHERE clause" on page 80
 "Pattern matching in search conditions" on page 80

* "Matching rows by sound" on page 81

* "Short cuts for typing search conditions" on page 81

75

Tutorials

7.1 Looking at the information in a table

The database you use in this tutorial is for a fictional company. The database
contains information about employees, departments, sales orders, and so on. All
the information is organized into a number of tables.

In this lesson, you look at one of the tables in the database. The command used
will look at everything in a table called employee. Execute the command

SELECT * FROM Employee

The table name employee is shown starting with an upper case E, even though
the real table name is all lower case. This is possible because the sample
database provided with SQL Anywhere is not case sensitive. When a database is
created, you specify whether or not you want it to be case sensitive. For
information on creating databases, see the chapter "Managing Databases With
SQL Central" on page 33, or the description of the DBINIT command in "SQL
Anywhere Components" on page 679.

You can type select or Select instead of SELECT. SQL Anywhere allows
you to type keywords in upper case, lower case, or any combination of the two.
In this manual, upper case letters are generally used for SQL keywords.

The SELECT statement retrieves all the rows and columns of the employee
table, and the ISQL Data window lists those that will fit:

emp_id manager_id emp_fname emp_lname dept_id
102 501 Fran Whitney 100
105 501 Matthew Cobb 100
129 902 Philip Chin 200
148 1293 Julie Jordan 300

160 501 Robert Breault 100

You will also see some information in the ISQL statistics window. This
information is explained later.

The employee table contains a number of rows organized into columns. Each
column has a name, such as emp_lname or emp_id. There is a row for each
employee of the company, and each row has a value in each of the columns. For
example, the employee with employee ID 102 is Fran Whitney, whose manager
is employee ID 501.

Manipulation of the ISQL environment is specific to the operating system you
are running in. For information on how to scroll the data and manipulate the
ISQL environment, see the "Undefined Heading" chapter for your specific
environment in the previous section of this manual.

76

Selecting Data From Database Tables

7.2 Ordering query results

Unless otherwise requested, SQL Anywhere displays the rows of a table in no
particular order. Often it is useful to look at the rows in a table in a more
meaningful sequence. For example, you might like to see employees in
alphabetical order.

The following example shows how adding an ORDER BY clause to the
SELECT statement causes the results to be retrieved in alphabetical order.

List the employees in alphabetical order.
SELECT *

FROM employee
ORDER BY emp_lname

emp_id manager_ id emp_fname emp_lname dept_id
1751 1576 Alex Ahmed 400
1013 703 Joseph Barker 500
591 1576 Irene Barletta 400
191 703 Jeannette Bertrand 500

1336 1293 Janet Bigelow 300

Notes

* The order of the clauses is important. The ORDER BY clause must follow the
FROM clause and the SELECT clause.

7.3 Selecting columns from a table

Often, you are only interested in some of the columns in a table. For example, to
make up birthday cards for employees you might want to see the emp_Iname,
dept_id, and birth_date columns.

List the last name, department, and birthdate of each employee.

SELECT emp_lname, dept_id, birth_date
FROM employee

emp_lname dept_id birth date
Whitney 100 1958-06-05
Cobb 100 1960-12-04
Chin 200 1966-10-30
Jordan 300 1951-12-13

Breault 100 1947-05-13

The three columns appear in the order in which you typed them in the SELECT
command. If you want to rearrange the columns, simply change the order of the

77

Tutorials

column names in the command. For example, to put the birth_date column on
the left, use the following command:

SELECT birth_date, emp_lname , dept_id
FROM employee

You can order rows and look at only certain columns at the same time as
follows:

SELECT birth_date, emp_lname , dept_id

FROM employee
ORDER BY emp_lname

As you might have guessed, the asterisk in

SELECT *
FROM employee

is a short form for all columns in the table.

7.4 Selecting rows from a table

78

Notes

Sometimes you will not want to see information on all the employees in the
employee table. Adding a WHERE clause to the SELECT statement allows
only some rows to be selected from a table.

For example, suppose you would like to look at the employees with first name
John.

List all employees named John.

SELECT *

FROM employee

WHERE emp_fname = ’‘John’
emp_id manager_id emp_fname emp_lname dept_id
318 1576 John Crow 400
862 501 John Sheffield 100
1483 1293 John Letiecq 300

« The apostrophes (single quotes) around the name ‘John’ are required. They
indicate that John is a character string. Quotation marks (double quotes) have
a different meaning. Quotation marks can be used to make otherwise invalid
strings valid for column names and other identifiers.

 The sample database provided with SQL Anywhere is not case sensitive, so
you would get the same results whether you searched for’ *JOHN’, ‘' john',
or ‘John’.

Selecting Data From Database Tables

Again, you can combine what you have learned:

SELECT emp_fname, emp_lname, birth_date
FROM employee

WHERE emp_fname = ’'John’

ORDER BY birth_date

Notes

» The ordering of the various clauses is important. The FROM clause comes
first, followed by the WHERE clause, and then the ORDER BY clause. If you
type the clauses in a different order, you will get a syntax error.

* You do not need to split the statement into several lines. You can enter the
statement into the command window in any format you like. If you use more
than the number of lines that fit on the screen, the text scrolls in the Command
window.

7.5 Comparing dates in queries

Sometimes, you will not know exactly what value you are looking for, or you
would like to see a set of values. You can use comparisons in the WHERE
clause to select a set of rows that satisfy the search condition. The following
example shows the use of a date inequality search condition.

SELECT emp_lname, birth_date
FROM employee
WHERE birth _date < 'March 3, 1964’

List all employees born before March 3, 1964.

SELECT emp_lname, birth_date
FROM employee
WHERE birth_date < ’‘March 3, 1964°

emp_lname birth_date
Whitney 1958-06-05
Cobb 1960-12-04
Jordan 1951-12-13
Breault 1947-05-13
Espinoza 1939-12-14

Dill 1963-07-19

SQL Anywhere knows that the birth_date column contains a date, and converts
‘March 3, 1964’ to adate automatically.

79

Tutorials

7.6 Compound search conditions in the WHERE

clause

So far, you have seen equal (=) and less than (<) as comparison operators. SQL
Anywhere also supports other comparison operators, such as greater than (>),
greater than or equal (>=), less than or equal (<=), and not equal (<>).

These conditions can be combined using AND and OR to make more
complicated search conditions.

List all employees born before March 3, 1964, but exclude the employee named
Whitney.

SELECT emp_lname, birth_date FROM employee
WHERE birth_date < '1964-3-3°
AND emp_lname <> ’‘whitney’

emp_lname birth_date
Cobb 1960-12-04
Jordan 1951-12-13
Breault 1947-05-13
Espinoza 1939-12-14
Dill 1963-07-19

Francis 1954-09-12

7.7 Pattern matching in search conditions

80

Another useful way to look for things is to search for a pattern. In SQL, the
word LIKE is used to search for patterns. The use of LIKE can be explained by
example.

List all employees whose last name begins with BR.
SELECT emp_lname, emp_fname

FROM employee
WHERE emp_lname LIKE ’‘br%’

emp_lname emp_£fname
Breault Robert
Braun Jane

The ’ %’ in the search condition indicates that any number of other characters
may follow the letters BR.

The following example lists all employees whose surname begins with BR,
followed by zero or more letters and a T, followed by zero or more letters.

SELECT emp_lname, emp_fname
FROM employee
WHERE emp_lname LIKE ’'BR%T%’

Selecting Data From Database Tables

emp_lname emp_fname
Breault Robert

The first % sign matches the string eaul, while the second % sign matches the
empty string (no characters).

There is one other special character that can be used with LIKE. The _
(underscore) matches exactly one character.

The pattern BR_U% matches all names starting with ' BR’ and having ‘U’ as
the fourth letter. In Braun the _ matches the letter A and the % matches N.

7.8 Matching rows by sound

With the SOUNDEX function, you can match rows by sound, as well as by
spelling. For example, suppose a phone message was left for a name that
sounded like "Ms. Brown". Which employees in the company have names that
sound like Brown?

List employees with surnames that sound like Brown.

SELECT emp_lname, emp_fname
FROM employee

WHERE SOUNDEX(emp_lname) = SOUNDEX(‘Brown’)
emp_lname emp_ fname
Braun Jane

Jane Braun is the only employee matching the search condition.

7.9 Short cuts for typing search conditions

SQL has two short forms for typing in search conditions. The first, BETWEEN,
is used when you are looking for a range of values. For example,
SELECT emp_lname, birth_date

FROM employee
WHERE birth_date BETWEEN ‘1965-1-1' AND ’'1965-3-31‘

is equivalent to:

SELECT emp_lname, birth_date

FROM employee

WHERE birth_date >= ‘1965-1-1"
AND birth_date <= ’1965-3-31"

The second short form, IN, may be used when looking for one of a number of
values. The command

81

Tutorials

82

SELECT
FROM
WHERE

emp_lname,
employee

emp_lname IN (’yeung’, 'bucceri’, ‘charlton’)

means the same as:

SELECT
FROM

WHERE

OR

OR

emp__lname,
employee
emp_lname
emp_lname
emp_lname

emp_id

emp_id

'yeung’
‘bucceri’
‘charlton’

Chapter 8

Joining Tables

About this chapter

This chapter describes database queries that look at information in more than one
table. To do this, SQL provides the JOIN operator. There are several different
ways to join tables together in queries, and this chapter describes some of the
more important ones.

Contents

* "Displaying a list of tables" on the next page.

* "Joining tables with the cross product” on page 85.
* "Restricting a join" on page 86.

* "How tables are related" on page 87.

* "Join operators" on page 88

83

Tutorials

8.1 Displaying a list of tables

84

In the chapter "Selecting Data From Database Tables" on page 75, you looked
only at the employee table in the database. The sample database consists of
eight tables, storing information about our fictional company.

customer contact
5 S The sample database n B TTTTY
fname char(15) last_name char(15)
Iname char(20) fist_name char(15)
address char(35) title char(2)
city char(20) street char30)
state char2) city char(20)
zip char(10) state char(2)
phone char(12) zip char(s)
company_name char(35) phone char(10)
fax char(10)
sales_order employee
id 2pk> integer emp id <pk> inf i1
cust_id <fk> integer manager_id integer
order_date date emp_fname char(20)
= outl fin_code_id <io char2) emp_Iname char(20)
region char7) dept_id <fc= integer
sales_rep <f integer street chand0)
sales_order_items city char20)
] <pido inteaat L ase chat)
line id <pk> smallint mp ey ™ ':_ HnA
prod_id <> integer . phone char(10)
quantity integer otk = M_cote_id status char()
ship_date date ss_number char(11)
salary numeric(20,3)
start_date date
termination_date date
birth_date date
- bene_health_ins char(1)
e nka 1 fincode bene_life_ins char(1)
prod sode sple chagd) bene_day_care char(1)
type char(10) sex char(y
description char(50)
Gept = cept
product o0k = code emp_k= cépt tead_id
id <pl integer |
name char(15)
description char(30) fin_data
size char(18) year <ple hat4 department
color char®) quatter <pk> cha dept id <plc integer
quantity integer code <pkfe char2) dept_name char(40)
unit_price numeric(15,2) amount numeric(@) dept_head_id <fic integer

Each box in the diagram represents a table in the database. The list of names in
each box are the column names for the table.

In ISQL, you can display a list of tables by pressing the F7 key. The tables for
the database are prefixed with dba (the owner of the tables).

Joining Tables

The cursor keys can be used to scroll through the list of tables. Each table in the
list is prefixed with a user name. This prefix is the user ID that created the
table—the owner of the table.

Positioning the highlight on a particular table and pressing the Column List
button displays the list of columns for that table. The Esc key takes you back to
the table list and pressing it again will take you back to the command window.
Also, pressing Enter instead of Esc copies the highlighted table or column name
into the command window at the current cursor position.

Press Esc to leave the list.

8.2 Joining tables with the cross product

One of the tables in the sample database is sales_order, which lists the orders
placed to the company. Each order has a sales_rep column, containing the
employee ID of the sales representative responsible for the order. There are 648
rows in the sales_order table.

You can get information from two different tables at the same time by listing
both tables in the FROM clause of a SELECT query.

The following example lists all the data in the employee table and the
sales_order table:

SELECT *
FROM sales_order, employee

The results of this query, displayed in the ISQL data window, match every row
in the employee table with every row in the sales_order table. Since there are
75 rows in the employee table and 648 rows in the sales_order table, there are
48600 rows in the result of the join. Each row consists of all columns from the
sales_order table followed by all columns from the employee table. This join is
called a full cross product.

85

Tutorials

The cross product join is a simple starting point for understanding joins, but not
very useful in itself.

8.3 Restricting a join

The most natural way to make a join useful is to insist that the sales_rep in the
sales_order table be the same as the one in the employee table in every row of
the result. Then each row contains information about an order and the sales rep
responsible for it.

To do this, add a WHERE clause to the previous query to show the list of
employees and their course registrations:

SELECT *
FROM sales_order, employee
WHERE sales_order.sales_rep = employee.emp_id

The table name is given as a prefix to identify the columns. Although not
strictly required in this case, using the table name prefix clarifies the statement,
and is required when two tables have a column with the same name. A table
name used in this context is called a qualifier.

The results of this query contain only 648 rows (one for each row in the
sales_order table). Of the original 48600 rows in the join, only 648 of them
have the employee number equal in the two tables.

The following query is a modified version, which fetches only some of the
columns and orders the results.

SELECT employee.emp_lname, sales_order.id, sales_order.order_date
FROM sales_order, employee

WHERE sales_order.sales_rep = employee.emp_id

ORDER BY employee.emp_lname

If there are many tables in a SELECT command, you may need to type several
qualifier names. This typing can be reduced by using a correlation name.

Correlation names are created by putting a short form for a table name
immediately after the table name, separated by the word *AS’. The short form is
then used as a qualifier instead of the corresponding table name, as follows:

SELECT E.emp_lname, S.id, S.order_date
FROM sales_order as S, employee as E
WHERE S.sales_rep = E.emp_id

ORDER BY E.emp_lname

Here, two correlation names S and E are created for the sales_order and
employee tables, respectively.

86

Joining Tables

If you try changing E.emp_id back to employee.emp_id, you will observe that
SQL Anywhere reports an error. If you make a correlation name for a table, you
must use the correlation name when qualifying which table a column is from;
you cannot use the original table name anymore.

8.4 How tables are related

In order to understand how to construct other kinds of joins, you must first
understand how the information in one table is related to that in another.

The primary key for a table identifies each row in the table, and tables are related
to each other using a foreign key.

This section shows how primary and foreign keys together let you construct
queries from more than one table.

8.4.1 Rows are identified by a primary key

Every table in the employee database has a primary key. A primary key is one or
more columns that uniquely identify a row in the table. For example, an
employee number uniquely identifies an employee—emp_id is the primary key
of the employee table.

The sales_order_items table is an example of a table with two columns that
make up the primary key. The order id by itself does not uniquely identify a row
in the sales_order_items table because there can be several items in an order.
Also, the line_id number does not uniquely identify a row in the
sales_order_items table. Both the order id name and line_id are required to
uniquely identify a row in the sales_order_items table. The primary key of the
table is both columns taken together.

8.4.2 Tables are related by a foreign key

There are several tables in the employee database that refer to other tables in the
database. For example, the sales_order table has a sales_rep column to indicate
which employee is responsible for an order. Only enough information to
uniquely identify an employee is kept in the sales_order table. The sales_rep
column in the sales_order table is a foreign key to the employee table.

A foreign key is one or more columns that contain primary key values from
another table. Each foreign key relationship in the employee database is
represented by an arrow between two tables. The arrow starts at the foreign key
side of the relationship and points to the primary key side of the relationship.

87

Tutorials

8.5 Join operators

Many common joins are between two tables related by a foreign key. The most
common join restricts foreign key values to be equal to primary key values. The
example you have already seen restricts foreign key values in the sales_order
table to be equal to the primary key values in the employee table.

SELECT emp_lname, id, order_date

FROM sales_order, employee
WHERE sales_order.sales_rep = employee.emp_id

The query can be more simply expressed using a KEY JOIN.

8.5.1 Joining tables using key joins

88

Key joins are an easy way to join tables related by a foreign key. For example:

SELECT emp_lname, id, order_date
FROM sales_order KEY JOIN employee

gives the same results as a query with a WHERE clause that equates the two
employee number columns:

SELECT emp_lname, id, order_date
FROM sales_order, employee
WHERE sales_order.sales_rep = employee.emp_id

The join operator (KEY JOIN) is just a short cut for typing the WHERE clause;
the two queries are identical.

If you look at the diagram of the employee database, foreign keys are
represented by lines between tables. Anywhere that two tables are joined by a
line in the diagram, you can use the KEY JOIN operator.

Two or more tables can be joined using join operators. The following query uses
four tables to list the total value of the orders placed by each customer. It
connects the four tables customer, sales_order, sales_order_items and
product using the lines between the tables.

SELECT company_name,

CAST(SUM(sales_order_items.quantity

* product.unit_price) AS INTEGER) AS value

FROM customer

KEY JOIN sales_order

KEY JOIN sales_order_items

KEY JOIN product
GROUP BY company_name

company_name value

Able Inc. 6120
AMF Corp. 3624
Amo & Sons 3216
Amy'’s Silk Screening 2028

Avco Ent 1752

The CAST function used in this query converts the data type of an expression.

8.5.2 Joining tables using natural joins

The NATURAL JOIN operator joins two tables based on common column
names. In other words, SQL Anywhere generates a WHERE clause that equates
the common columns from each table.

For example, for the following query:

SELECT emp_lname, dept_name
FROM employee
NATURAL JOIN department

the database engine looks at the two tables and determines that the only column
name they have in common is dept_id. The following WHERE clause is
internally generated and used to perform the join:

WHERE employee.dept_id = department.dept_id

NOTE: This join operator can cause problems by equating columns you may not
intend to be equated. For example, the following query generates
unwanted results:

SELECT *
FROM sales_order
NATURAL JOIN customer

The result of this query has no rows.
The database engine internally generates the following WHERE clause:

WHERE sales_order.id = customer.id

The id column in the sales_order table is an identification number for the order.
The id column in the customer table is an identification number for the
customer. None of them matched. Of course, even if a match were found, it
would be a meaningless one.

You should be careful not to use join operators blindly. Always remember that
the join operator just saves you from typing the WHERE clause for a foreign key

89

Tutorials

or common column names. You should be conscious of the WHERE clause, or
you may be creating queries that give different results than you intend.

90

Chapter 9

Obtaining Aggregate Data

About this chapter

This chapter describes how to construct queries that tell you aggregate
information. Examples of aggregate information are:

* The total of all values in a column.
* The number of distinct entries in a column.
* The average value of entries in a column.

Contents

* "A first look at aggregate functions" on the next page
* "Using aggregate functions to obtain grouped data" on the next page
* "Restricting groups" on page 94

91

Tutorials

9.1 A first look at aggregate functions

Suppose you want to know how many employees there are.
The following statement retrieves the number of rows in the employee table:

SELECT count(*)
FROM employee

count(*)
75

The result returned from this query is a table with only one column (with title
count(*)) and one row, which contains the number of employees.

The following command is a slightly more complicated aggregate query:

SELECT count(*), min(birth_date), max(birth_date)
FROM employee
count(*) min(birth_date) max(birth_date)
75 1936-01-02 1973-01-18

The result set from this query has three columns and only one row. The three
columns contain the number of employees, the birthdate of the oldest employee,
and the birthdate of the youngest employee.

COUNT, MIN and MAX are called aggregate functions. Each of these
functions summarizes information for an entire table. In total, there are six
aggregate functions: MIN, MAX, COUNT, AVG, SUM, and LIST. All but
COUNT have the name of a column as a parameter. As you have seen, COUNT
has an asterisk as its parameter.

9.2 Using aggregate functions to obtain grouped
data

In addition to providing information about an entire table, aggregate functions
can be used on groups of rows.

List the number of orders each sales representative is responsible for:
SELECT sales_rep, count(*)

FROM sales_order
GROUP BY sales_rep

92

Obtaining Aggregate Data

sales_rep count(*)
129 57
195 50
299 114
467 56

667 54

The results of this query consist of one row for each sales rep ID number,
containing the sales rep ID, and the number of rows in the sales_order table
with that number.

Whenever GROUP BY is used, the resulting table has one row for each different
value found in the GROUP BY column or columns.

A common error with GROUP BY

A common error with groups is to try to get information which cannot properly
be put in a group. For example,

SELECT sales_rep, emp_lname, count(*)
FROM sales_order

KEY JOIN employee
GROUP BY sales_rep

gives the error

column ‘emp_lname’ cannot be used unless it is in a GROUP BY.

SQL does not realize that each of the rows for an employee with a given ID have
the same value of emp_Iname. An error is reported since SQL does not know
which of the names to display.

However, the following is valid:

SELECT sales_rep, max(emp_lname), count(*)
FROM sales_order

KEY JOIN employee
GROUP BY sales_rep

The max function chooses the maximum (last alphabetically) surname from the
detail rows for each group. The surname is the same on every detail row within
a group so the max is just a trick to bypass a limitation of SQL.

93

Tutorials

9.3 Restricting groups

94

You have already seen how to restrict rows in a query using the WHERE clause.
You can restrict GROUP BY clauses by using the HAVING keyword.

List all sales reps with more than 55 orders:

SELECT sales_rep, count(*)
FROM sales_order

KEY JOIN employee
GROUP BY sales_rep
HAVING count(*) > 55

sales_rep count(*)
129 57

299 114

467 56

1142 57

NOTE: GROUP BY must always appear before HAVING. In the same manner,
WHERE must appear before GROUP BY.

HAVING clauses and WHERE clauses can be combined. When combining
these clauses, the efficiency of the query can depend on whether criteria are
placed in the HAVING clause or in the WHERE clause. Criteria in the
HAVING clause restrict the rows of the result only after the groups have been
constructed. Criteria in the WHERE clause are evaluated before the groups are
constructed, and save time.

List all sales reps with more than 55 orders and an ID of more than 1000:

SELECT sales_rep, count(*)
FROM sales_order

KEY JOIN employee
WHERE sales_rep > 1000
GROUP BY sales_rep
HAVING count(*) > 55

The following statement produces the same results.
List all sales reps with more than 55 orders and an ID of more than 1000:

SELECT sales_rep, count(*)
FROM sales_order
KEY JOIN employee
GROUP BY sales_rep
HAVING count(*) > 55
AND sales_rep > 1000

The first statement is faster because it can eliminate making up groups for some
of the employees. The second statement builds a group for each sales rep and
then eliminates the groups with wrong employee numbers. For example, in the
first statement, the database engine would not have to make up a group for the

sales rep with employee ID 129. In the second command, the database engine
would make up a group for employee 129 and eliminate that group with the
HAVING clause.

Fortunately, SQL Anywhere detects this particular problem and changes the
second query to be the same as the first. SQL Anywhere performs this
optimization with simple conditions (nothing involving OR or IN). For this
reason, when constructing queries with both a WHERE clause and a HAVING
clause, you should be careful to put as many of the conditions as possible in the
WHERE clause.

95

Tutorials

96

Chapter 10

Updating the Database

About this chapter
This chapter describes how to make changes in the contents of a database.

It includes descriptions of how to add new rows, remove rows, and change the
contents of rows, as well as how to make changes permanent or back out of
changes you have made.

Contents

* "Adding rows to a table" on the next page

e "Modifying rows in a table" on the next page
» "Canceling changes" on page 99

e "Making changes permanent" on page 100

e "Deleting rows" on page 100

 "Validity checking" on page 101

97

Tutorials

10.1 Adding rows to a table

Suppose that a new Eastern Sales department is created, with the same manager
as the current Sales department. You can add this information to the database
using the following INSERT statement:

INSERT
INTO department (dept_id, dept_name, dept_head_id)
VALUES (220, ’‘Eastern Sales’, 902)

If you make a mistake and forget to specify one of the columns, SQL Anywhere
reports an error.

The NULL value is a special value used to indicate that something is either not
known or not applicable. Some columns are allowed to contain the NULL value,
and others are not. In the case of the above example, SQL Anywhere reports an
error because the columns of the department table are not allowed to contain
the NULL value.

A short form for INSERT

There is a short form which can be used if you are entering values for all the
columns in a table in the order they appear when you SELECT * from the table
(the same as the order in which they were created). The following is equivalent
to the previous INSERT command:

INSERT
INTO department
VALUES (220, ’'Eastern Sales’, 902)

You should use this form of INSERT with caution because it will not work as
expected if you ever change the order of the columns in the table or if you add or
remove a column from the table.

10.2 Modifying rows in a table

98

In most databases, you need to update data stored in the database. For example,
suppose that the employee named James Klobucher (employee ID 467) is
transferred from the Sales department to the Marketing department. In SQL, this
is done using the UPDATE statement:

UPDATE employee

SET dept_id = 400
WHERE emp_id = 467

The WHERE clause identifies which employee to update.

Updating the Database

SQL can update more than one column at a time. For example, the manager ID
should change when employees are transferred between departments, as well as
the department ID. The following statement carries out both updates at the same
time for employee Marc Dill (employee ID 195):

UPDATE employee

SET dept_id = 400,
manager_id = 1576

WHERE emp_id = 195

The UPDATE and INSERT commands are two of the few places in SQL
Anywhere where uppercase letters and lowercase letters are distinguished. New
character values set by the UPDATE command are stored in the database exactly
as they are entered.

SQL allows more than one row to be updated at one time. For example, if a
group of sales employees are transferred into marketing, and have their dept_id
column updated, the following statement sets the manager_id for all employees
in the marketing department to 1576.

UPDATE employee
SET manager_id = 1576
WHERE dept_id = 400

For employees already in the marketing department, no change is made.

It is also possible that an UPDATE statement updates no rows. For example,
suppose you had made a mistake typing the employee ID in the first UPDATE
statement above:

UPDATE employee
SET dept_id = 400
WHERE emp_id = 194

No rows would be updated since there is no employee with the employee ID
194.

10.3 Canceling changes

You may be a little concerned about all of the changes you have made to the
employee table. However, SQL allows you to undo all of these changes with
one command:

ROLLBACK

The ROLLBACK statement undoes all changes you have made to the database
since the last time you made changes permanent (see COMMIT in the next
section). The default action in ISQL is to do a COMMIT on exit. This can be
controlled with the ISQL option COMMIT_ON_EXIT. For more information
on ISQL options, see "SET OPTION Statement" on page 989.

99

Tutorials

10.4 Making changes permanent
The SQL statement

COMMIT

makes all changes permanent.

NOTE: When trying the examples in this tutorial, be careful not to COMMIT
any changes until you are sure that you want to change the database
permanently.

The default action in ISQL is to do a COMMIT on exit. This can be controlled
with the ISQL option COMMIT_ON_EXIT. For more information on ISQL
options, see "SET OPTION Statement" on page 989.

ISQL has another option named AUTO_COMMIT. If this option is on, ISQL
does a COMMIT operation after every command. The default for this option is
OFF. Usually you will want it OFF giving you the opportunity to ROLLBACK
the changes if, for example, an update or delete operation doesn’t produce the
intended results.

10.5 Deleting rows

Sometimes you will want to remove rows from a table. Suppose Rodrigo
Guevara (employee ID 249) leaves the company. The following statement
deletes Rodrigo Guevara from the employee table.

DELETE
FROM employee
WHERE emp_id = 249

You can delete more than one row with one command. For example, the
following statement would delete all employees who had a termination date that
is not NULL from the employee table.

DELETE
FROM employee
WHERE termination_date IS NOT NULL

This example would not remove any employees from the database as the
termination_date column is NULL for all employees.

With UPDATE and DELETE, the search condition can be as complicated as you
need. For example, if the employee table is being reorganized, the following
statement removes from the employee table all employees in the 617 area code
with employee ID 902 as manager. This WHERE clause is a compound search
condition including a function (LEFT).

100

Updating the Database

DELETE
FROM employee
WHERE LEFT(phone, 3) = '617’

AND manager_id = 902

Since you have made changes to the database which you do not want to keep,
you should undo the changes as follows:

ROLLBACK

10.6 Validity checking

SQL Anywhere automatically checks for some common errors in your data.

10.6.1 Inserting duplicate data

For example, suppose you attempt to create a department but supply a dept_id
value that is already in use: To do this, enter the command:

INSERT
INTO department (dept_id, dept_name, dept_head_id)
VALUES (200, ’‘Eastern Sales’, 902)

The INSERT is rejected, as it would make the primary key for the table not
unique.

A primary key is a set of columns that uniquely identifies each row in a table.
For example, the dept_id column is the primary key for the department table;
given a valid department ID number, there is exactly one row in the department
table with that number. The primary key for the sales_order_items table is
composed of the id and line_id columns, meaning that there should never be two
items in the same order with the same line number.

10.6.2 Inserting incorrect values

Another mistake is to type an incorrect value. The following statement inserts a
new row in the sales_order table, but incorrectly supplies a sales_rep ID that
does not exist in the employee table.

INSERT
INTO sales_order (id, cust_id, order_date, sales_rep)
VALUES (2700, 186, ’1995-10-19’, 284)

The primary key for the employee table is the employee ID number. The sales
rep ID number in the sales_rep table is a foreign key for the employee table,
meaning that each sales rep number in the sales_order table must match the
employee ID number for some employee in the employee table.

101

Tutorials

When you try to add an order for sales rep 284 you get an error message:

no primary key for foreign key ’'ky_so_employee_id’
in table ’'sales_order’

There is no employee in the employee table with that ID number. This prevents
you from inserting orders without a valid sales rep ID. This kind of validity
checking is called referential integrity checking, as it maintains the integrity of
references among the tables in the database.

10.6.3 Errors on DELETE or UPDATE

102

Foreign key errors can also arise when doing update or delete operations. For
example, suppose you try to remove the R & D department from the department
table.

DELETE
FROM department
WHERE dept_id = 100

An error is reported indicating that there are other records in the database that
reference the R & D department, and the delete operation is not carried out.

primary key for row in table ‘department’
is referenced in another table

In order to remove the R & D department, you need to first get rid of all
employees in that department:

DELETE

FROM employee
WHERE dept_id = 100

You can now perform the deletion of the R & D department.

You should cancel these changes to the database, for future use, by entering a
ROLLBACK statement:

ROLLBACK WORK

All changes made since the last successful COMMIT WORK will be undone. If
you have not done a COMMIT, then all changes since you started ISQL will be
undone.

The same error message is generated if you perform an update operation that
makes the database inconsistent. For example, the following UPDATE
statement causes an integrity error:

UPDATE department
SET dept_id
WHERE dept_id

600
100

In all of the above examples, the integrity of the database was checked as each
command was executed. Any operation that would result in an inconsistent
database is not performed.

It is possible to configure the database so that the integrity is not checked until
the COMMIT WORK is done. This is important if you want to change the value
of a referenced primary key, for example, changing the R & D department’s ID
from 100 to 600 in the department and employee tables. In order to make these
changes, the database has to be inconsistent in between the changes. In this case,
you must configure the database to check only on commits. For information on
the WAIT_FOR_COMMIT database option, see "SET OPTION Statement" on
page 989.

You can also define foreign keys in such a way that they are automatically fixed.
In the above example, if the foreign key from employee to department were
defined with ON UPDATE CASCADE, then updating the department ID would
automatically update the employee table.

In the above cases, there is no way to have an inconsistent database committed
as permanent.

SQL Anywhere also supports alternative actions if changes would render the
database inconsistent. For more information, see the chapter "Ensuring Data
Integrity" on page 183.

103

Tutorials

104

Chapter 11

Introduction to Views

About this chapter

It is often impractical to repeatedly type complicated queries. SQL provides
views which allow you to give names to frequently executed SELECT
commands. This chapter introduces you to views.

Contents

* "Defining a view" on the next page.
* "Using views for security" on page 107.

105

Tutorials

11.1 Defining a view

Suppose that you frequently need to list a summary of employees and the
departments they belong to. The following query produces the information you
need:

List employees and the departments to which they belong.

SELECT emp_fname, emp_lname, dept_name
FROM employee JOIN department
ON department.dept_id = employee.dept_id

emp_£fname emp_lname department
Fran Whitney R &D
Matthew Cobb R &D
Robert Breault R &D
Natasha Shishov R &D
Kurt Driscoll R &D

You can create a view that produces the results of this command as follows:
CREATE VIEW emp_dept AS
SELECT emp_fname, emp_lname, dept_name

FROM employee JOIN department
ON department.dept_id = employee.dept_id

This command creates a view called emp_dept which looks in many respects
just like any other table in the database.

You can list everything in this view just as you do from a table:

List employees and the departments to which they belong.

SELECT *

FROM emp_dept
emp_£fname emp_lname department
Fran Whitney R &D
Matthew Cobb R &D
Robert Breault R &D
Natasha Shishov R &D
Kurt Driscoll R & D

It is important to remember that the information in a view is not stored
separately in the database. Each time you refer to the view, SQL executes the
associated SELECT statement to find the appropriate data. On one hand, this is
good because it means that if someone modifies the employee table or the
department table, the information in the emp_dept view will be automatically
up to date. On the other hand, if the SELECT command is complicated it may
take a long time for SQL to find the correct information every time you use the
view.

106

Introduction to Views

You can provide names for the view columns explicitly. First, you must get rid
of the original view definition as follows:

DROP VIEW emp_dept

You can redefine the view with the new column name as follows:

CREATE VIEW emp_dept (FirstName, LastName, Department) AS
SELECT emp_fname, emp_lname, dept_name
FROM employee JOIN department

ON department.dept_id = employee.dept_id

You have changed the names of the columns in the view by specifying new
column names in parentheses after the view name.

Views can be thought of as computed tables. Any SELECT command can be
used in a view definition except commands containing ORDER BY. Views can
use GROUP BY clauses, subqueries, and joins. Disallowing ORDER BY is
consistent with the fact that rows of a table in a relational database are not stored
in any particular order. When you use the view, you can specify an ORDER
BY.

You can also use views in more complicated queries. Here is an example using a
join:
SELECT LastName, dept_head_id

FROM emp_dept, department
WHERE emp_dept.Department = department.dept_name

11.2 Using views for security

Views can be used to restrict access to information in the database. For
example, suppose you wanted to create a userid for the Sales department head,
Moira Kelly, and restrict her user ID so that it can only examine information
about employees in the Sales department.

First, you need to create the new user ID for Moira Kelly using the GRANT
statement. From ISQL, connected to the sample database as dba, enter the
following:

GRANT CONNECT TO M_Kelly IDENTIFIED BY SalesHead

Next, you need to grant user M_Kelly the right to look at employees of the Sales
department. For this, you can define a view which only looks at Sales
employees as follows:

CREATE VIEW SalesEmployee AS

SELECT emp_id, emp_lname, emp_fname
FROM "dba".employee

WHERE dept_id = 200

107

Tutorials

108

The table should be identified as "dba''.employee for the M_Kelly user ID to
be able to use the view.

Now you must give M_Kelly permission to look at the new view. Enter the
following:

GRANT SELECT ON SalesEmployee TO M_Kelly

Connect to the database as the M_Kelly user ID and try looking at the view you
have created:

CONNECT USER M_Kelly IDENTIFIED BY SalesHead

SELECT * FROM "dba".SalesEmployee

emp_id emp_lname emp_fname
129 Chin Philip
195 Dill Marc

299 Overbey Rollin
467 Klobucher James

641 Powell Thomas

However, you do not have permission to look directly at the employee and
department tables. If you execute the following commands, you will get
permission errors.

SELECT * FROM "dba".employee

SELECT * FROM "dba".department

Chapter 12

Introduction to Subqueries

About this chapter

This chapter shows how to use the results of one query as part of another
SELECT statement. This is a useful tool in building more complex and
informative queries.

Contents
» "Preparing to use subqueries" on the next page
* "A simple subquery" on the next page

* "Comparisons using subqueries" on page 112
» "Using subqueries instead of joins" on page 114

109

Tutorials

12.1 Preparing to use subqueries

Sometimes it would be useful to use the results of one statement as part of
another statement.

For example, suppose that you need a list of order items for products that are low
in stock.

You can look up the products for which there are less than 20 items in stock in
the product table.

List all products for which there are less than 20 items in stock.
SELECT 1id, description, quantity

FROM product

WHERE quantity < 20

id description quantity
401 Wool cap 12

This query shows that only wool caps are low in stock.

You can list all the order items for wool caps with the following query:
List all orders for wool caps, most recent first.

SELECT *

FROM sales_order_items

WHERE prod_id = 401
ORDER BY ship_date DESC

id line_id prod_id quantity ship date

2082 1 401 48 1994-07-09
2053 1 401 60 1994-06-30
2125 2 401 36 1994-06-28
2027 1 401 12 1994-06-17
2062 1 401 36 1994-06-17

This two step process of identifying items low in stock and identifying orders for
those items can be combined into a single query using subqueries.

12.2 A simple subquery

SQL provides another way to find orders for items low in stock. The following
query incorporates a subquery:

List order items for products low in stock.

110

Introduction to Subqueries

SELECT *
FROM sales_order_items
WHERE prod_id IN
(SELECT id
FROM product
WHERE quantity < 20)
ORDER BY ship_date DESC

id line_id prod_id guantity ship date
2082 1 401 48 1994-07-09
2053 1 401 60 1994-06-30
2125 2 401 36 1994-06-28
2027 1 401 12 1994-06-17
2062 1 401 36 1994-06-17

By using a subquery, the search can be carried out in just one query, instead of
using one query to find the list of low-stock products, and a second to find orders
for those products.

The subquery in the statement is the phrase enclosed in parentheses:

(SELECT id
FROM product
WHERE quantity < 20)

The subquery makes a list of all values in the id column in the product table
satisfying the WHERE clause search condition.

Consider what would happen if an order for ten tank tops were shipped, so that
the quantity column for tank tops contained the value 18. The query using the
subquery, would list all orders for both wool caps and tank tops. On the other
hand, the first statement you used would have to be changed to the following:

SELECT *

FROM sales_order_items
WHERE prod_id IN (401, 300)
ORDER BY ship_date DESC

The command using the subquery is an improvement because it still works even
if data in the database is changed.

As another example, you can list orders for everything except those products in
short supply with the query:

SELECT *
FROM sales_order_items
WHERE prod_id NOT IN

(SELECT 1id

FROM product
WHERE quantity < 20)
ORDER BY ship_date DESC

11

Tutorials

12.3 Comparisons using subqueries

Two tables in the sample database are concerned with financial results. The
fin_code table is a small table holding the different codes for financial data and
their meanings:

List the contents of the fin_code table.

SELECT *
FROM fin_code
code type description
el expense Fees
e2 expense Services
e3 expense Sales & Marketing
ed expense R &D
e5 expense Administration
rl revenue Fees
r2 revenue Services

The fin_data table holds financial data for each financial code for each quarter.

List the contents of the fin_data table.

SELECT *

FROM fin_data
year quarter code amount
1992 Q1 el 101
1992 Q1 e2 403
1992 Q1 e3 1437
1992 Q1 ed 623

1992 Q1 e5 381

The following query uses a subquery to list just the revenue items from the
fin_data table.

List the revenue items from the fin_data table.

SELECT *
FROM fin_data
WHERE fin_data.code IN
(SELECT fin_code.code
FROM fin_code

WHERE type = ’‘revenue’)
year quarter code amount
1992 Q1 rl 1023
1992 Q2 rl 2033
1992 Q3 rl 2998
1992 Q4 rl 3014

1993 Q1 rl 3114

112

Introduction to Subqueries

This example has used qualifiers to clearly identify the table to which the code
column in each reference belongs. In this particular example, the qualifiers
could have been omitted.

Subqueries are restricted to one column name listed between SELECT and
FROM: one select-list item. The following example does not make sense since
SQL would not know which column from fin_code to compare to the
fin_data.code column.

SELECT *
FROM fin_data
WHERE fin_data.code IN
(SELECT fin_code.code, fin_code.type
FROM fin_code
WHERE type = ’'revenue’)

Further, while subqueries used with an IN condition may return several rows, a
subquery used with a comparison operator must return only one row. For
example, the following command will result in an error since the subquery
returns two rows (rl, and r2):

SELECT *
FROM fin_data
WHERE fin_data.code =
(SELECT f£fin_code.code
FROM fin_ code
WHERE type = ’‘revenue’)

The IN comparison allows several rows. Two other keywords can be used as
qualifiers for operators to allow them to work with multiple rows: ANY and
ALL.

The following query is identical to the successful query above:

SELECT * s
FROM fin_data
WHERE fin_data.code = ANY
(SELECT fin_code.code
FROM fin_code
WHERE type = ’‘revenue’)

While the = ANY condition is identical to the IN condition, ANY can also be
used with inequalities such as <, or >, to give more flexible use of subqueries.

The word ALL is similar to the word ANY. For example, the following query
lists financial data that is not revenues:

SELECT *
FROM fin_data
WHERE fin_data.code <> ALL
(SELECT fin_code.code
FROM fin_code
WHERE type = ’‘revenue’)

This is equivalent to the following command using NOT IN:

113

Tutorials

12.4 Using

114

SELECT *
FROM fin_data
WHERE fin_data.code NOT IN
(SELECT fin_code.code
FROM fin_code
WHERE type = ’‘revenue’)

subqueries instead of joins

Suppose you need a chronological list of orders and the company that placed
them, but would like the company name instead of their customer id. You can
get this result using a join as follows:

List the order id, date, and company name for each order since the beginning of
1994.

SELECT sales_order.id,
sales_order.order_date,
customer.company_name

FROM sales_order KEY JOIN customer

WHERE order_date > ’1994/01/01"

ORDER BY order_date

id order_date company_name

2473 1994-01-04 Peachtree Active Wear
2474 1994-01-04 Sampson & Sons

2036 1994-01-05 Hermanns

2106 1994-01-05 Salt & Pepper’s

2475 1994-01-05 Cinnamon Rainbow’s

The following statement obtains the same results using a subquery instead of a
join:
SELECT sales_order.id,
sales_order.order_date,
(SELECT company_name FROM customer
WHERE customer.id = sales_order.cust_id)
FROM sales_order

WHERE order_date > '1994/01/01"
ORDER BY order_date

The subquery refers to the cust_id column in the sales_order table even though
the sales_order table is not part of the subquery. Instead, the
sales_order.cust_id column refers to the sales_order table in the main body of
the statement. This is called an outer reference. Any subquery that contains an
outer reference is called a correlated subquery.

A subquery can be used instead of a join whenever only one column is required
from the other table. (Recall that subqueries can only return one column.) In this
example, you only needed the company_name column so the join could be
changed into a subquery.

If the subquery might have no result, this method is called an outer join. The
join in previous sections of the tutorial is more fully called an inner join.

List all customers in Washington State together with their most recent order id:

SELECT company_name,
state,
(SELECT MAX(id)
FROM sales_order
WHERE sales_order.cust_id = customer.id)
FROM customer
WHERE state = ‘WA’

company_name MAX(id) state
Custom Designs 2547 WA
It’s a Hit! (NULL) WA

The It’s a Hit! company placed no orders, and the subquery returns NULL for
this customer. Companies who have not placed an order would not be listed if
an inner join was used.

You could also specify an outer join explicitly. In this case a GROUP BY clause
is also required.

SELECT company_name,
MAX(sales_order.id),

state
FROM customer

KEY LEFT OUTER JOIN sales_order
WHERE state = ‘WA’

GROUP BY company_name, state

115

Tutorials

116

Chapter 13

Command Files

About this chapter

This chapter describes how to use the ISQL command window to enter multiple
commands at a time, and to process files consisting of a set of commands.

Contents

* "Entering multiple statements in the ISQL Command window" on the next
page

* "Saving statements as command files" on the next page

* "Command files with parameters" on page 119

117

Tutorials

13.1 Entering multiple statements in the ISQL
Command window

SQL commands can get quite large. You have already seen how to use the
editor to enter commands on several lines. The ISQL environment also allows
multiple commands to be entered at the same time. This is done by ending each
command with a semi-colon (;).

You may want to grow the Command window. In DOS, OS/2 or QNX, choose
Zoom from the Command menu; in Windows or Windows NT, click the
maximize button.

Try entering the following three commands into the Command window.

UPDATE employee

SET dept_id = 400,
manager_id = 1576

WHERE emp_id = 467;

UPDATE employee

SET dept_id = 400,
manager_id = 1576

WHERE emp_id = 195;

SELECT *
FROM employee
WHERE emp_id IN (195, 467)

When you press the execute key (F9), all three of these commands are executed.
After execution, the commands are left in the Command window. You can
modify them if there are errors.

13.2 Saving statements as command files

You can also save the commands entered in the previous section to a command
file. This keeps a permanent record of the SQL commands so they can be used
later if you wish.

Choose Save As from the File menu. You are then prompted for a filename.
Type transfer and press Enter.

The command file can be run using the ISQL READ command, but you should
rollback the changes first. So press the Escape key (Esc) to clear the editor and
then execute the ROLLBACK WORK command. Now enter the following
command:

READ transfer

118

Command Files

This executes the command file trans fer which contains the three commands
that we saved previously. As each command is executed, it flashes up in the
Command window.

You can load command files back into the Command window by choosing Open
from the File menu. Try this and enter transfer when prompted for the file
name. Notice that the commands have been loaded back into the editor just the
way they were when they were saved.

Command files are just ASCII files containing the ISQL commands as you see
them in the editor. You can use any editor that you like to create command files.
You can include comment lines along with the SQL statements to be executed.
Comments begin with a percent sign (%). The ISQL READ command is used
to execute command files. Alternatively, they can be loaded into the ISQL
Command window and executed directly from there.

The Command window in ISQL has a limit of 500 lines. For command files
larger than this, you should use a generic editor capable of handling large files.
The READ command has no limit on the number of lines that can be read.

13.3 Command files with parameters

An example of a command file that would take a parameter is a command file to
show the department an employee belongs to, providing the employee’s name as
a parameter.

Create a command file as listed below The PARAMETERS command is used to
give names to the parameters passed to a command file. In this case, we are
giving the first parameter the name employee_name. The parameters are then
used in the rest of the command file by enclosing them in braces ({}). Save the
command file to emp_dept.sql.

% This command file has one parameter
parameters employee_name;

select emp_lname, dept_name

from employee

NATURAL JOIN department
where emp_lname = {employee_name};

Run this command file by typing:

READ emp_dept.sqgl

You will be prompted for the employee_name. Enter the following value,
including the apostrophes:

'Whitney’

119

Tutorials

120

You should now see that the employee with surname Whitney is in the R & D
department.

Parameters can also be specified on the READ command. Try the following
command:

READ emp_dept.sql ’‘whitney’

In this case, you have specified the parameter on the READ command, so ISQL
will not prompt for it. ISQL will only prompt for parameters that are named in
the PARAMETERS command but are not supplied on the READ command.

Chapter 14

Special Tables

About this chapter

There are several special tables which are found in every SQL Anywhere
database. These special tables describe all the tables and columns in the
database. Collectively, these tables are known as the system tables, system
catalog or data dictionary. The SQL Anywhere software automatically updates
the data dictionary as the database structure is changed.

This chapter introduces the system tables.
Contents

» "The SYSCATALOG table" on the next page
¢ "The SYSCOLUMNS table" on the next page
» "Other special tables" on page 123

121

Tutorials

14.1 The SYSCATALOG table

The first special table lists all the tables in the database. To view the contents of
the SYSCATALOG table for the sample database, type the following command:

SELECT *
FROM sys.syscatalog

The first screen full of tables lists some of the special tables found in SQL
Anywhere. If you scroll the ISQL data window a few times, you will see the
tables that make up the company database.

The creator of the special tables is the special user ID SYS and the creator of the
company tables is dba. In addition, there is a set of views owned by the special
user ID DBO, which provide an emulation of the Sybase SQL Server system
catalog: these tables are not discussed in this section.

(Recall that dba is the user ID you used when connecting to the database from
ISQL.) In all previous examples, you have simply typed the table names
employee and department; SQL looked in SYSCATALOG for tables with
those names created by dba. In this example, by typing SYS.SYSCATALOG,
you specified that SYSCATALOG was created by the user ID SYS. Note the
similarity to the way column names are qualified, such as employee.emp_id.

The other columns in this table contain other important information. For
example, the column named Ncols is the number of columns in each table, and
the column named tabletype identifies the table as a permanent table (also called
a base table) or a view.

14.2 The SYSCOLUMNS table

122

Another important system table is called SYSCOLUMNS describing all the
columns in all the tables in the database. To see the contents of this table, type
the command:

SELECT *
FROM sys.syscolumns
WHERE tname = ’‘employee’

This command lists all the columns in the employee table. If you look at the
columns to the right, you can see from the Coltype column that some columns in
the employee table contain character information; others contain integer and
date information.

Special Tables

14.3 Other special tables

There are several other special tables in the database which will not be described
in the tutorial. However, you can find out their names by examining
SYS.SYSCATALOG and look at them if you want.

For a full description of each of the system tables, see "SQL Anywhere System
Tables" on page 1131.

123

Tutorials

124

Chapter 15

Connecting to a database

About this chapter

This chapter describes how client applications connect to SQL Anywhere
databases.

Client applications use a set of connection parameters to determine the database
engine and database to which they connect. The details differ according to the
SQL Anywhere programming interface the client application uses.

This chapter also contains all the SQL Anywhere-specific information about
connecting to databases from ODBC-enabled applications and application
development systems. If you are writing a program directly using one of the
programming interfaces to SQL Anywhere, you should see "Programming
Interfaces" on page 531 for implementation details.

Contents

* "Connection overview" on the next page.
» "Connecting from the SQL Anywhere utilities" on page 132.
¢ "Connecting from an ODBC-enabled application" on page 133.

127

Using SQL Anywhere

15.1 Connection overview

Any client application that uses a database must establish a connection to that
database before any work can be done. While the user may be prompted to enter
a user ID, a password, and other parameters, the connection is established by the
client application through one of SQL Anywhere’s programming interfaces.

Once the connection is established, it forms the channel through which all the
activity you engage in from the client application takes place. For example, the
permissions you have to carry out actions on the database are determined by
your user ID—and the database engine is aware of your user ID because it is part
of the request to establish a connection.

15.1.1 Database connection parameters

128

When an application connects to a database, it uses a set of connection
parameters, collected together in a connection string, to define the connection.
For example, connection strings specify a user ID and password, as well as other
optional information; all connections using ODBC must supply a Data Source
name.

A large class of client applications employs a very similar set of connection
parameters when attempting to connect to a SQL Anywhere database. These
are:

 All applications connecting to SQL Anywhere databases through the ODBC
interface using the SQLDriverConnect function. This includes many
ODBC-enabled application development systems, as well as applications
developed using those systems.

* The SQL Anywhere database utilities ISQL, DBBACKUP, DBWATCH,
DBUNLOAD, and DBVALID.

* All other Embedded SQL applications connecting using the
db_string_connect function, which is the recommended way to connect to a
database in Embedded SQL.

The way you specify the connection parameters depends on the particular client
application you are working from. Applications may use one of the following
methods:

* ODBC-enabled applications use a Data Source configuration, which may be
entered using the ODBC Administrator program. For more information on
adding an ODBC data source using the ODBC Administrator, see "Adding an
ODBC data source" on page 138.

* You may be prompted to fill in fields in a dialog box.

* You may be required to enter command-line arguments.

Connecting to a database

» The application may look in pre-specified files to find the parameter values.
» The application may use environment variable settings.
 The application may have a fixed set of parameters built in permanently.

All these applications use a connection string consisting of a list of parameter
settings, each of the form KEYWORD=value, delimited by semicolons. The
keywords must come from the following table.

Verbose keyword Short form Argument
Userid uiD string
Password PWD string
ConnectionName CON string *
EngineName ENG string
DatabaseName DBN string
DataSourceName DSN string #
DatabaseFile DBF string
DatabaseSwitches DBS string
AutoStop AutoStop YES/NO
Start Start string

Figure 1. Connection management keywords: * Not ODBC. # ODBC only

15.1.2 Connection keyword meanings

The meaning of each of the connection parameter keywords is as follows:

Userid

Password

The user ID with which you log on to the database. You must
always supply a Userid when connecting to a database.

Your database password. You must always supply a password
when connecting to a database.

ConnectionName

EngineName

An optional parameter, providing a name for the particular
connection you are making. You may leave this unspecified
unless you are going to establish more than one connection, and
switch between them. ConnectionName is not used when
connecting through ODBC.

The server name of a running database engine or server to which
you wish to connect. You need to supply a server name only if
more than one database engine is running. For more information
about the engine name see "Some database terms" on page 20.

In the SQL Central and ISQL Connect dialog box, and in the
ODBC Administrator, this is the Server Name field.

129

Using SQL Anywhere

130

DatabaseName

When a database is started, it is assigned a database name. The
default database name is the name of the database file with the
extension and path removed. For more information about the
database name see "Some database terms" on page 20.

For information on this field, see "How client applications connect
to a database" on the next page.

DataSourceName

DatabaseFile

The DataSourceName tells an ODBC application where to look in
odbc.ini to find information about the database to which you wish
to connect.

DataSourceName is used only by ODBC-enabled applications,
and is compulsory for this class of application.

The root file of the database to which you wish to connect.

You should supply a DatabaseFile only if you are connecting to a
database that is not currently running.

For example, to start and connect to the sample database (installed
in directory c:\sqlany50), use a DatabaseFile entry of
c:\sqglany50\sademo.db.

DatabaseSwitches

AutoStop

Start

You should supply DatabaseSwitches only if you are connecting
to a database that is not currently running. When the engine starts
the database specified by DatabaseFile, the engine will use the
supplied DatabaseSwitches as command line options to determine
startup options for the database. For more information about
database switches, see "The database engine" on page 685.

You should supply an AutoStop keyword only if you are
connecting to a database that is not currently running. If AutoStop
is set to yes then the database is unloaded automatically as soon as
there are no more open connections to it.

You should supply a Start keyword only if you are connecting to a
database engine that is not currently running. The Start parameter
is a command line to start a database engine. For a detailed
description of available command line switches, see "The database
engine" on page 685.

Connecting to a database

For a detailed description of how client applications use the connection
parameters when connecting to a database, see "How client applications connect
to a database".

15.1.3 How client applications connect to a database

Once you have specified the connection parameters, using whatever method your
client application requires, the application attempts to connect to a database.

The procedure the client follows is exactly the same for each of two important
sets of client application:

e Any ODBC-enabled client application. Many application development
systems, such as Powersoft PowerBuilder, belong to this class of application.

¢ Any client application employing Embedded SQL and using the recommended
function for connecting to a database (db_string_connect). All the SQL
Anywhere database tools, including ISQL, are a part of this set.

Connecting to a database is of fundamental importance: you cannot do any work
on a database without first connecting to it. For this reason, the process followed
by client applications is described in detail:

1. The application tries to find the appropriate database engine or server:

1. If EngineName is specified, the application looks for a local database
engine with that name, and then for a SQL Anywhere Client
(DBCLIENT) with that server name. For QNX, the application looks
on the network for an engine or server.

2. If EngineName is not specified, the application tries to connect to the
default local engine. If there is only one engine running, it is the
default, otherwise the default choice is operating-system specific.

3. If no matching local database engine is found, and the SQL Anywhere
Client is not running, a database engine or SQL Anywhere Client is
started using the Start parameter.

4. If no Start parameter is specified, but DatabaseFile is specified, the
application attempts to start a database engine on the named file,
using a default start parameter. For more information about database
engine parameters, see "The database engine" on page 685.

5. If no engine has yet been found or started, the attempt to connect fails
at this point.

2. If a database engine has been successfully found or started, the application
tries to connect to the database:

131

Using SQL Anywhere

1. If neither a DatabaseName nor a DatabaseFile is given, the
application attempts to connect to the default database on the engine,
using the specified Userid, Password, and ConnectionName
parameters.

2. If the database named by DatabaseName is running, the application
attempts to connect to the database using the specified Userid,
Password, and ConnectionName parameters.

3. If DatabaseName is not specified, but DatabaseFile is, the
application attempts to connect to a database whose name is the root
of DatabaseFile.

4. If no running database is found, but a database specified by the root of
DatabaseFile is running, the application attempts to connect to the
database using the specified Userid, Password, and
ConnectionName parameters.

5. If the database corresponding to DatabaseFile is not running, the
application sends a request to the engine or network server to start a
database using the DatabaseFile, DatabaseName, and
DatabaseSwitches parameters. (The AutoStop parameter determines
if the database automatically stops when the last connection to the
database is disconnected.) The application then attempts to connect to
the database using the specified Userid, Password, and
ConnectionName parameters.

6. If no connection is made, the attempt fails at this point.

CONNECT statement from ISQL

The ISQL utility has a different behavior from the default Embedded SQL
behavior when a CONNECT statement is issued while already connected to a
database. If no database or engine is specified in the CONNECT statement,
ISQL connects to the current database, rather than to the default database. This
behavior is required for database reloading operations. For an example, see
"CONNECT Statement" on page 840.

15.2 Connecting from the SQL Anywhere utilities

132

All the SQL Anywhere database utilities that communicate with the database
engine (rather than acting directly on database files) do so using Embedded SQL,
and follow the procedure outlined in "How client applications connect to a
database" on the previous page when connecting to a database.

Many of the database tools obtain the values of the connection parameters in the
following way:

1. If there are values specified on the command line, those values are used for
the connection parameters. For example, the command:

Connecting to a database

DBBACKUP -c "UID=DBA; PWD=SQL" c:\backup

starts a backup of the default database on the default database engine using
the user ID "DBA" and the password "SQL".

2. If any command line values are missing, the application looks at the setting
of the SQLCONNECT environment variable. This variable is not set
automatically by SQL Anywhere. If you use a single set of connection
parameters frequently, you may wish to place a SQLCONNECT
environment variable in your autoexec.bat file (under DOS and Windows
3.x), your config.sys file (under OS/2), the Control Panel (under NT) or the
Jogin file (under QNX).

For a description of the SQLCONNECT environment variable, see
"Environment variables" on page 682.

3. If parameters are not set in the command line (if applicable), or the
SQLCONNECT environment variable, then by the connection procedure
described above, the application prompts for a user ID and password to
connect to the default database on the default database engine.

Command line switches for each database tool are described in the chapter "SQL
Anywhere Components".

15.3 Connecting from an ODBC-enabled application

The Open Database Connectivity (ODBC) interface is defined by Microsoft
Corporation, and is a standard interface for connecting client applications to
database management systems in the Windows and Windows NT environments.
Many client applications, including application development systems, use the
ODBC interface to access a wide range of database systems. These are
ODBC-enabled applications. SQL Anywhere supports the ODBC interface.

This section describes how to connect to SQL Anywhere from ODBC-enabled
applications. For information about how to write an ODBC program, see the
chapter "ODBC Programming".

ODBC-enabled applications employ a set of connection parameters in the
manner described above. However, they obtain values for those parameters in a
different manner to Embedded SQL applications. ODBC defines data sources.
Each data source description contains several of the required connection
parameters. The other connection parameters are obtained from the user (for
instance, you may be presented with a dialog box to enter a user ID and
password), or internally by the client application.

133

Using SQL Anywhere

15.3.1 SQL Anywhere support for ODBC

SQL Anywhere provides ODBC Version 2.1 support at conformance Level 2,
which is the highest level of support for ODBC Version 2.1.

For Windows and Windows NT, SQL Anywhere ODBC support takes place
using the Microsoft ODBC driver manager, installed as part of the SQL
Anywhere installation. The ODBC driver manager enables different ODBC
drivers to run at the same time, and allows an ODBC-enabled application to
communicate with more than one ODBC driver and data source.

For DOS and QNX, SQL Anywhere supports ODBC as an application
programming interface only. For information about ODBC programming in
these operating systems, see the chapter "ODBC Programming".

SQL Anywhere supports ODBC as an application programming interface for
0S/2. Additional software from third party vendors does allow the use of the
SQL Anywhere ODBC driver from ODBC-enabled client applications through
the third party ODBC driver manager.

For more information about using ODBC under Windows and Windows NT, see
"Using ODBC under Windows and Windows NT". For more information about
using ODBC client applications under OS/2, see "Using ODBC under OS/2" on
page 141. For more information about using ODBC under DOS and QNX, see
"Using ODBC under DOS and QNX" on page 141.

15.3.2 Using ODBC under Windows and Windows NT

134

All the information about installed ODBC database management systems and
databases on your machine is held in two files (in Windows 3.x) or in the
registry (in Windows 95 and NT). odbcinst.ini holds the information about
different ODBC DBMS drivers installed on your system, including SQL
Anywhere. odbc.ini holds information about available data sources.

You can look at and alter the information in these files using the ODBC
Administrator. The SQL Anywhere installation for Windows operating systems
installs the ODBC Administrator as one of the icons in your SQL Anywhere

group.

Connecting to a database

15.3.3 Files necessary for ODBC connections

The files needed for ODBC client applications to connect to a SQL Anywhere
database are shown for the case of a Windows 95 or NT setup in the following
figure.

P>
\I/

ODBCINST.INI
ODBC.INI

Under Windows and Windows NT, ODBC-enabled client applications call the
ODBC driver manager. For Windows 3.x, the ODBC driver manager is
odbc.dll, installed in your Windows system subdirectory; for Windows 95 and
NT this is odbc32.dll, installed in your NT system32 subdirectory or your
Windows 95 system subdirectory. A third party driver manager is available
from Intersolv, Inc., providing similar functionality for OS/2.

Each ODBC-supporting DBMS, including SQL Anywhere, supplies its own
ODBC driver, which is called by the ODBC driver manager. Each ODBC driver
isa DLL.

The SQL Anywhere ODBC driver is installed as part of your SQL Anywhere
setup. For Windows 3.x, this driver is wodS0w.dll, for Windows 95 and NT, the
driver is wod50t.dll, and for OS/2 the driver is wod502.dll. The SQL Anywhere
installation places the wod50w.dll file in the win subdirectory of your SQL
AnywhereDB installation directory, the wod50t.dll file in the NT subdirectory,
or the wod502.dll file in the OS2 subdirectory, depending on the platform you
are using. The location of the SQL Anywhere ODBC driver is recorded in
odbcinst.ini, which is kept in your Windows directory or in the registry.

The default Windows character set differs in some cases from that used by DOS
in the default code page (437). The Windows character set is sometimes called
the ANSI character set, and the DOS code page sometimes called the OEM
character set. A translation DLL can be used to convert characters from the
ANSI character set (used by a Windows application) to the default character set
in use by the database (code page 437), and vice versa. This translation DLL is
wtr50w.dll (Windows 3.x), wtr50t.dll (Windows 95 or NT), and wtr502.dl1
(0S72).

OEM to ANSI character set translation does not affect the alphabetic and
numeric characters. It does affect some graphics characters that occupy higher
positions in the collation.

135

Using SQL Anywhere

The SQL Anywhere ODBC driver requires additional files. Under Windows,
dbl50w.dll needs to be in the DOS path, under Windows 95 or NT, dbl50t.dll is
required, and under OS/2 dbl502.dll is required. These files are installed in the
Windows, NT, or OS2 subdirectories of your SQL Anywhere installation
directory.

A language DLL is also required, as specified in the sqlany.ini file or registry.
For Windows 3.x, sqlany.ini should be in your Windows directory; for
Windows 95 and NT sqlany.ini is a registry. The SQL Anywhere installation
does not install sqlany.ini; but it is created when you run ISQL or SQL Central.
The default language DLL is wl50en.dll (English); other languages must be
specified separately.

A file or registry entry named odbcinst.ini holds information about all the
ODBC drivers on the computer. When SQL Anywhere is installed, it adds a
description of the SQL Anywhere ODBC driver to edbcinst.ini, which is held in
the Windows 3.x system subdirectory, and in the Windows 95 or NT registry. If
you start the ODBC Administrator, and click the Driver button, you should see
Sybase SQL Anywhere 5.0 listed among the installed ODBC drivers.

You should not have to make any modifications concerning the SQL Anywhere
driver.

The description of the SQL Anywhere driver in the Windows 3.x odbcinst.ini
includes the following:

[ODBC Drivers]
Sybase SQL Anywhere 5.0=Installed

[ODBC Translators]
Sybase SQL Anywhere 5.0 Translator=Installed

[Sybase SQL Anywhere 5.0]
Driver=c:\sqglany50\win\wod50w.dll
Setup=c:\sqglany50\win\wod50w.d11l

[Sybase SQL Anywhere 5.0 Translator]

Translator=c:\sqglany50\win\wtr50w.dll
Setup=c:\sqglany50win\wtr50w.dll

The corresponding information is held in the Windows 95 or NT registry.

15.3.4 Working with ODBC Data Sources

136

For each database that you wish to access from an ODBC client application on
your computer, you need to enter a Data Source in the odbc.ini file or registry.
In Windows and Windows NT, you can enter the Data Source description using
the ODBC Administrator. The information contained about each Data Source in
odbc.ini includes several of the connection parameters needed to connect to a
database.

Connecting to a database

Some application development systems, such as PowerBuilder, add this
information automatically if you create a data source from within the system. In
this case you do not need to use the ODBC Administrator.

The SQL Anywhere sample database information is automatically installed into
this file during SQL Anywhere setup. You can see the Data Source information
for the sample database using the ODBC Administrator.

If you are having trouble connecting to a SQL Anywhere database from an
ODBC-enabled client application, you should check that the information in the
Data Source definition is correct.

15.3.5 Using the ODBC Administrator

Although you can add, remove and modify data source information by directly
editing the odbe.ini file in Windows or by using the registry editor in Windows
NT, it is much easier to use the ODBC Administrator program.

The left side of the Administrator window lists the available data sources
including the SQL Anywhere sample database. If you have other ODBC
software installed on your computer, you may have other data sources available.
Pressing the Drivers button will display a list of the currently installed ODBC
drivers, and allow you to install new ODBC drivers or remove drivers.

The following actions are available for data sources:
¢ Adding a data source.
* Modifying a data source.

¢ Removing a data source.

These are discussed in the following sections.

137

Using SQL Anywhere

15.3.6 Adding an ODBC data source

138

The SQL Anywhere ODBC driver can access databases through local SQL
Anywhere engines or SQL Anywhere network servers.

Database must exist

To add a data source for a database file, the database must already exist. See
"Working With Database Objects" on page 163 for information on creating a
new database. You must create a database before using the ODBC
Administrator program to add a data source for the database.

If you want to add a new data source, press the Add button. You will be
presented with a list of the available drivers. Select the SQL Anywhere driver
from the list and press the OK button. You will be presented with the SQL
Anywhere ODBC Configuration dialog box.

Data Source Name: |SOIREUNCITEGENIEEII AL

D [Sybase SQL Anywhere Sample Datab |

User ID: I

Password: [

Server Name: I<defaulb

Database Name: I

~Datab

p

Datab Eile: Ic:‘ qlany50\ ple.db I

QOlLlocal O Network @ Custom

" Additional C ion Options

Translator Name: I(No Translator>

[Mi ft Applicati (Keys in SQLStatisti

[] Prevent Driver not Capable errors

EI Delay AutoCommit until statement close

The SQL Anywhere ODBC Configuration dialog box contains the following
fields. These fields correspond to the connection parameters. For a description
of the connection parameters and a description of the manner in which they are
used to establish a connection with a database, see "Database connection
parameters" on page 128.

Data Source Name
This should be a short name for the data source, such as Orders or
Accounts Payable.

Connecting to a database

Description

User ID

Password

Server Name

A longer description of the data source.

(Optional) The user name to be used when connecting. If the user
ID is omitted, most applications prompt you for a user ID and
password when connecting to the data source.

(Optional) The password for the supplied User ID. Since the
password supplied is stored in odbc.ini, setting the password here
may be a security risk. If the password is omitted, most
applications prompt you to enter your password when connecting
to the data source.

The name of a SQL Anywhere database engine or server. If not
specified, the default engine is used. This field corresponds to the
EngineName connection parameter.

Database Name

Database File

If specified, this corresponds to the name of a database already
running on a SQL Anywhere database engine or SQL Anywhere
network server. This field corresponds to the DatabaseName
connection parameter.

If specified, this contains the name of a database file—such as
c:\sqlanyS0\sademo.db. You can use the Browse button to locate
a database file name to place in this field. This field corresponds
to the DatabaseFile connection parameter.

Local, Network, Custom

The command used to run the database software when the named
database engine or server is not already executing. You can select
Local or Network, as appropriate, if the default settings are
satisfactory. Otherwise, select Custom and enter the command
including any command line parameters by pressing the Options
button.

Microsoft Applications (Keys in SQLStatistics)

The ODBC specification states that primary and foreign keys
should not be returned by SQLStatistics. Some programs
(including Microsoft Visual Basic V3.0 and Microsoft Access
V1.0 and V1.1) assume that primary and foreign keys are returned
by SQLStatistics. Checking this option makes the SQL. Anywhere
ODBC driver mimic the required behavior so these applications
work properly.

139

Using SQL Anywhere

Prevent Driver not Capable Errors
The SQL Anywhere ODBC driver returns a "Driver not Capable"
error code because it does not support qualifiers. Some ODBC
applications do not handle this error properly. Checking this box
disables this error code, allowing these applications to work.

The following example shows the description of the SQL Anywhere sample
database and a sample SQL Anywhere client in the Windows odbc.ini:

[ODBC Data Sources]
SQL Anywhere 5.0 Sample=Sybase SQL Anywhere 5.0

[SQL Anywhere 5.0 Sample]
driver=c:\sqglany50\win\wod50w.d1l1l
description=Sybase SQL Anywhere Sample Database
DatabaseFile=c:\sqglany50\sademo.db
Start=c:\sglany50\win\dbeng50w -d

[SQL Anywhere 5.0 Sample Client]
driver=c:\sglany50\win\wod50w.dll
description=SQL Anywhere Client/Server
EngineName=place_server_name_here
Start=c:\sglany50\win\dbclienw

15.3.7 Modifying an existing ODBC data source

To modify an existing data source, select the data source in the ODBC
Administrator and press the Setup button. You can modify any of the attributes
set when the data source was added.

For a description of the attributes, see "Adding an ODBC data source" on page
138.

15.3.8 Removing an ODBC data source

140

To remove an ODBC data source, select the data source in the ODBC
Administrator and press the Delete button. You will be prompted to confirm the
deletion.

Database file is not deleted

Removing a data source does not delete the database file. It simply deletes the
description of the data source from the odbec.ini file or Windows NT registry.
It can be added back as described above.

Connecting to a database

15.3.9 Using ODBC under 0S/2

An ODBC Administrator program and an ODBC driver manager are available
for OS/2 and can be acquired from INTERSOLYV, Inc. It provides the same
functionality as the ODBC Administrator program and ODBC.DLL driver
manager under Windows or Windows NT. The Administrator program is not
supplied with SQL Anywhere.

Even if you are not using the ODBC Administrator, the file odbec.ini is still used
to describe the available data sources. Under OS/2, odbc.ini is a binary file. As
such, it is not easily editable. The SQL Anywhere installation creates this file
with a definition of the sample data source. The installation also includes an
OS/2 command file, odbcini.cmd that uses the REXX API to modify the file.
This command file can be modified and run to create additional data sources.

15.3.10 Using ODBC under DOS and QNX

The file odbec.ini is still used to describe the available data sources. This file
must be located somewhere in your path. The following example contains a data
source definition for the SQL Anywhere sample database:

[ODBC Data Sources]
SQL Anywhere 5.0 Sample=Sybase SQL Anywhere 5.0

[SQL Anywhere 5.0 Sample]
driver=c:\sqglany50\win\wod50w.d1l1l
description=Sybase SQL Anywhere Sample Database
DatabaseFile=c:\sqglany50\sademo.db
Start=c:\sglany50\win\dbeng50w -d

The first section of the file ((ODBC Data Sources]) lists all of the currently
defined data sources. In this case there is only one, called SQL Anywhere 5.0
Sample.

The second section of the file ([SQL Anywhere 5.0 Sample]) describes the data
source named SQL Anywhere 5.0 Sample. This section contains the following
fields:

Description A longer description of the data source.

Userid (Optional) The user name to be used when connecting. If it is
omitted, most ODBC applications will prompt you for a User ID
and Password when connecting to the data source.

Password ~ (Optional) The password for the supplied User ID. Setting the
password here may be a security risk. If the password is omitted,
most applications will prompt you to enter your password when
connecting to the data source.

141

Using SQL Anywhere

DatabaseFile The name of a SQL Anywhere database file.
Start The command used to run the database software when the named

database is not already executing. It contains the command
including any command line parameters.

142

Chapter 16

Designing Your Database

About this chapter

SQL Anywhere is a relational database engine. This chapter introduces the basic
concepts of relational databases and gives you step-by-step suggestions for
designing your database.

While designing a database is not a difficult task for small and medium sized
databases, it is an important one. Bad database design can lead to an inefficient
and possibly unreliable database system. As client applications are built to work
on specific parts of a database, and rely on the database design, a bad design can
be difficult to revise at a later date.

Before you begin

This chapter is not specific to SQL Anywhere. If you already have a database,
you may wish to go to the next chapter.

This chapter covers database design in a cursory manner. For more information,
you may wish to consult an introductory book such as A Database Primer by C.
J. Date. If you are interested in database theory, C. J. Date’s An Introduction
to Database Systems (fourth edition) is an excellent textbook on the subject.

Contents
» "Relational database concepts” on the next page.
* "Planning the database" on page 146.

* "The design process" on page 148.
» "Designing the database table properties” on page 160.

143

Using SQL Anywhere

16.1 Relational database concepts

This section introduces some of the terms and concepts that are important in
talking about relational databases.

16.1.1 Database tables

144

In a relational database, all data is held in tables, which are made up of rows and
columns.

Each table has one or more columns, and each column is assigned a specific data
type, such as an integer number, a sequence of characters (for text), or a date.
Each row in the table has a value for each column.

A typical fragment of a table containing employee information may look as
follows:

emp_ID emp_Iname emp_fname emp_phone
10057 Huong Zhang 1096
Anne 7821

10693 Donaldson

The tables of a relational database have some important characteristics:

 There is no significance to the order of the columns or rows.
» Each row contains one and only one value for each column.
* No two rows contain the same set of values.

 Each value for a given column is of the same type.

The following table lists some of the formal and informal relational database
terms describing tables and their contents, together with their equivalent in other
nonrelational databases. In this User’s Guide we use the informal terms.

Formal Informal Equivalent
relational term relational term nonrelational term
Relation Table File

Attribute Column Field

Tuple Row Record

Designing Your Database

16.1.2 Keys in relational databases

Primary and foreign keys enable each row in the database tables to be identified,
and enable relationships between the tables to be defined. These keys define the
relational structure of a database.

16.1.3 Each table has a primary key

Each table in a relational database has a primary key. The primary key is a
column, or set of columns, that allows each row in the table to be uniquely
identified. No two rows may have the same value of a primary key.

Examples

1. In atable holding information about employees, the primary key may be an
ID number assigned to each employee.

2. In the sample database, the table of sales order items has the following
columns:

* An order number, identifying the order the item is part of.
* A line number, identifying each item on any order.

* A product id, identifying the product being ordered.

* A quantity, showing how many items were ordered.

* A ship date, showing when the order was shipped.

In order to identify a particular item, both the order number and the line
number are required. The primary key is made up of both these columns.

16.1.4 Tables are related by foreign keys

The information in one table is related to that in other tables by foreign key
relations.

Example

The sample database has one table holding employee information and one table
holding department information. The department table has the following
columns:

* dept_id, an ID number for the department. This is the primary key for the
table.

* dept_name, holding the name of the department.

145

Using SQL Anywhere

To find out a particular employee’s department, there is no need to put the name
of the employee’s department into the employee table. Instead, the employee
table contains a column holding the department ID of the employee’s
department. This is called a foreign key to the department table. A foreign key
references a particular row in the table containing the corresponding primary
key.

In this example, the employee table (which contains the foreign key in the
relationship) is called the foreign table or referencing table. The department
table (which contains the referenced primary key) is called the primary table or
the referenced table.

If a primary key is not assigned, the combination of all columns in the table
becomes the primary key. This can lead to a very large transaction log.

16.1.5 Other database objects

A relational database holds more than a set of related tables. Among the other
objects that make up a SQL Anywhere relational database are:

¢ The index: indexes allow quick lookup of information.

e The view: views are computed tables.

¢ The stored procedure and the trigger: these are routines held in the database
itself that act on the information in the database.

All these objects are in some way built on top of the base tables that hold the
information. A base table is a table that is stored permanently in the database.
In this chapter, therefore, we discuss only how to decide what tables you need
and what each table needs to hold.

16.2 Planning the database

146

In designing a database you plan what tables you require and what data they will
contain. You also determine how the tables are related.

You must determine what things you want to store information about (each one
is an entity) and how these things are related (by a relationship). A useful
technique in designing your database is to draw a picture of your tables. This
graphical display of a database is called an Entity-Relationship (E-R) diagram.
Usually, each box in an E-R diagram corresponds to a table in a relational
database, and each line from the diagram corresponds to a foreign key.

Designing Your Database

Entity-Relationship design

Entity-Relationship design (E-R design) is an example of top-down design of
databases. There are now sophisticated methods and tools available to pursue
E-R design of databases in great detail. This chapter is an introductory chapter
only, but it does contain enough information for the design of fairly
straightforward databases.

Each table in the database describes an entity; it is the database equivalent of a
noun. Employees, order items, departments and products are all examples of
entities represented by a table in a database. The entities that you build into your
database arise from the activities for which you will be using the database,
whether that be tracking sales calls, maintaining employee information, or some
other activity.

A relationship between entities is the database equivalent of a verb. An
employee is associated with a department, or an office is located in a city.
Relationships in a database may appear as foreign key relationships between
tables, or may appear as separate tables themselves. We will see examples of
each in this chapter.

The relationships in the database are an encoding of rules or practices governing
the data in the table. If each department has one department head, then a single
column can be built into the department table to hold the name of the department
head. When these rules are built into the structure of the database, there is no
provision for exceptions: there is nowhere to put a second department head, and
duplicating the department entry would involve duplicating the department ID,
which is the primary key. This is not allowed.

There are three kinds of relationships between tables:

¢ One-to-many relationships

Department i—‘—M) Employees

* One-to-one relationships

1 1 D
Department epartment
opa Head
¢ Many-to-many relationships
. M M
Skill 4P Employees

147

Using SQL Anywhere

16.3 The design process

There are five major steps in the design process:

NhA WD -

Identify the entities and relationships you need.

Identify the required data for each entity and relationship.
Normalize the data.

Resolve the relationships.

Verify the design.

For information about implementing the database design, see the chapter
"Working With Database Objects" on page 163.

16.3.1 Step 1: identify entities and relationships

To identify the entities in your design and their relationship to each other:

148

1.

Define high-level activities

Identify the general activities you will use this database for. For example,
you may want to keep track of information about employees.

Identify entities

For the list of activities, identify the subject areas you need to maintain
information about. These will become tables. For example, hire
employees, assign to a department, and determine a skill level.

Identify relationships

Look at the activities and determine what the relationships will be between
the tables. For example, there is a relationship between departments and
employees. We give this relationship a name.

Break down the activities

You started out with high-level activities. Now examine these activities
more carefully to see if some of them can be broken down into lower-level
activities. For example, a high-level activity such as "maintain employee
information" can be broken down into:

¢ Add new employees.
» Change existing employee information.

* Delete terminated employees.

Identify business rules

Designing Your Database

Look at your business description and see what rules you follow. For
example, one business rule might be that a department has one and only
one department head. These rules will be built into the structure of the
database.

Example

ACME Corporation is a small company with offices in five locations. Currently,
75 employees work for ACME. The company is preparing for rapid growth and
has identified nine departments, each with its own department head.

To help in its search for new employees, the personnel department has identified
68 skills that it believes the company will need in its future employee base.
When an employee is hired, the employee’s level of expertise for each skill is
identified.

Define high-level activities

Some of the high-level activities for ACME Corporation are:

¢ Hire employees.

» Terminate employees.

* Maintain personal employee information.

* Maintain information on skills required for the company.

* Maintain information on which employees have which skills.
* Maintain information on departments.

¢ Maintain information on offices.

Identify the entities and relationships

We can identify the subject areas (tables) and relationships that will hold the
information and create a diagram based on the description and high-level
activities.

We use boxes to show tables and diamonds to show relationships. We can also
identify which relationships are one-to-many, one-to-one, and many-to-many.

This is a rough E-R diagram. It will be refined throughout the chapter.

149

Using SQL Anywhere

Office Skill Department

Works Expert Associated
In In With

M M M

Employee M

Break down the high-level activities

The lower-level activities below are based on the high-level activities listed
above:

¢ Add or delete an employee

¢ Add or delete an office

* List employees for a department

* Add a skill

¢ Add a skill for an employee

« Identify skills for an employee

* Identify an employee’s skill level for each skill

« Identify all employees that have the same skill level for a particular skill
» Change an employee’s skill level

These lower-level activities can be used to identify if any new tables or
relationships are needed.

Identify business rules

Business rules often identify one-to-many, one-to-one, and many-to-many
relationships.

The kind of business rules that may be relevant include the following:

 There are now five offices; expansion plans allow for a maximum of 10.

150

Designing Your Database

* Employees can change department or office.

* Each department has one department head.

* Each office has a maximum of three telephone numbers.

* Each telephone number has one or more extensions.

* When an employee is hired, the level of expertise in each of several skills is
identified.

» Each employee can have from three to 20 skills.

* An employee may or may not be assigned to an office.

16.3.2 Step 2: identify the required data

To identify the required data:

1. Identify supporting data.

List all the data you will need to keep track of. The data that describes the
table (subject) answers the questions who, what, where, when, and why.

2. Setup data for each table.
List the available data for each table as it seems appropriate right now.
3. Set up data for each relationship.

List the data that applies to each relationship (if any).

Identify supporting data

The supporting data you identify will become the names of the columns in the
table. For example, the data below might apply to the Employee table, the Skill
table, and the Expert In table:

Employee Skill Expert In

Employee ID Skill ID Skill level

Employee first name Skill name Date skill was acquired
Employee last name Description of skill

Employee department
Employee office
Employee address

If you make a diagram of this data, it will look like this:

151

Using SQL Anywhere

Skill @ | Employee

Skill ID Skill level Employee ID
Skill name Date acquired Employee last name
Skill description Employee first name

Employee department
Employee office
Employee address

Things to remember

* When you are identifying the supporting data, be sure to refer to the activities
you identified earlier to see how you will need to access the data.

For example, if you know that you will need a list of all employees sorted by
last name, make sure that you specify supporting data as Last name and First
name, rather than simply Name (which would contain both first and last
names).

 The names you choose should be consistent. Consistency makes it easier to
maintain your database and easier to read reports and output windows.

For example, if you choose to use an abbreviated name such as Emp_status for
one piece of data, you should not use the full name (Employee_ID) for another
piece of data. Instead, the names should be Emp_status and Emp_ID.

« It is not crucial that the data be associated with the correct table. You can use
your intuition. In the next section, you’ll apply tests to check your judgment.

16.3.3 Step 3: normalize the data

Normalization is a series of tests you use to eliminate redundancy in the data and
make sure the data is associated with the correct table or relationship. There are
five tests. In this section, we will talk about the three tests that are usually used.

For more information about the normalization tests, see a book on database
design.

Normal forms

Normal forms are the tests you usually use to normalize data. When your data
passes the first test, it is considered to be in first normal form, when it passes

162

Designing Your Database

the second test, it is in second normal form, and when it passes the third test, it
is in third normal form.

To normalize the data:

1. List the data:

e Identify at least one key for each table. Each table must have a primary
key.

* Identify keys for relationships. The keys for a relationship are the keys
from the two tables it joins.

¢ Check for calculated data in your supporting data list. Calculated data is
not normally stored in the database.

2. Putdata in first normal form:

* Remove repeating data from tables and relationships.
* Create one or more tables and relationships with the data you remove.

3.. Put data in second normal form:

¢ Identify tables and relationships with more than one key.
* Remove data that depends on only one part of the key.
* Create one or more tables and relationships with the data you remove.

4. Put data in third normal form:

* Remove data that depends on other data in the table or relationship and
not on the key.
* Create one or more tables and relationships with the data you remove.

Data and keys

Before you begin to normalize (test your data), simply list the data and identify a
unique primary key for each table. The key can be made up of one piece of data
(column) or several (a concatenated key).

The primary key is the set of columns that uniquely identifies rows in a table.
The primary key for the Employee table is the Employee ID column. The
primary key for the Works In relationship consists of the Office Code and
Employee ID columns. Give a key to each relationship in your database by
taking the key from each of the tables it connects. In the example, the keys
identified with an asterisk are the keys for the relationship:

153

Using SQL Anywhere

154

Relationship Key
Office *Office code
Office address

Phone number

Works in *Office code
*Employee ID

Department *Department ID
Department name

Heads *Department ID
*Employee ID

Assoc with *Department ID
*Employee ID

Skill *Skill ID
Skill name
Skill description

Expert in *Skill ID
*Employee ID
Skill level
Date acquired

Employee *Employee ID
Employee last name
Employee first name
Social security number
Employee street
Employee city
Employee state
Employee phone

Date of birth

Putting data in first normal form

¢ Remove repeating groups.

To test for first normal form, remove repeating groups and put them into a
table of their own.

In the example below, Phone number can repeat. (An office can have more
than one telephone number.) Remove the repeating group and make a new
table called Telephone. Set up a relationship called Associated With between
Telephone and Office.

Designing Your Database

Office

* Office code
__Office address

| Phone number |

- — — —

Office

* Office code
Office address

Associated
With

*

Office code

M

Telephone

Putting data in second normal form

* Remove data that does not depend on the whole key.

* Phone number

Look only at tables and relationships that have more than one key. To test for
second normal form, remove any data that does not depend on the whole key
(all the columns that make up the key).

In this example, the original Employee table specifies a key composed of two
columns. Some of the data does not depend on the whole key; for example,
the department name depends on only one of those keys (Department ID).
Therefore, the Department ID, which the other employee data does not depend
on, is moved to a table of its own called Department, and a relationship called
Assigned To is set up between Employee and Department.

155

Using SQL Anywhere

Employee Employee

* Employee ID
Employee last name
Employee first name

* Employee ID ___
[TDeparlment ID L M
| Department name |

Employee last name
Employee first name

Assigned
To * Employee ID

* Department ID

Department

* Department ID
Department name

Putting data in third normal form

¢ Remove data that doesn’t depend directly on the key.

To test for third normal form, remove any data that depends on other data
rather than directly on the key.

In this example, the original Employee table contains data that depends on its
key (Employee ID). However, data such as office location and office phone
depend on another piece of data, Office code. They do not depend directly on
the key, Employee ID. Remove this group of data along with Office code,
which it depends on, and make another table called Office. Then we will
create a relationship called Works In that connects Employee with Office.

156

Designing Your Database

Employee Employee

* Employee ID M * Employee ID
Employee last name Employee last name
Employee first name Employee first name
Office code

| Office location

. Office phone

* Employee ID
Office code

*QOffice code
Office location .

16.3.4 Step 4: resolve the relationships

When you finish the normalization process, your design is almost complete. All
you need to do is resolve the relationships.

Resolving relationships that carry data

Some of your relationships may carry data. This situation often occurs in
many-to-many relationships.

157

Using SQL Anywhere

Skill

* Skill ID
Skill name

Skill

* Skill ID
Skill name

__

* Employee ID
* Skill ID
Skill level

Employee

P Expertise

* Employee ID
* Skill ID
Skill level

lgq—— Employee

* Employee ID

* Employee ID

When this is the case, change the relationship to a table. The key to the new
table remains the same as it was for the relationship.

Resolving relationships that do not carry data

In order to implement relationships that do not carry data, you need to define
foreign keys. A foreign key is a column or set of columns that contains primary
key values from another table. The foreign key allows you to access data from
more than one table at one time.

There are some basic rules that help you decide where to put the keys:

One to many In a one-to-many relationship, the primary key in the one is

158

Office

* Office code

Office

1 w

To

* Office code
* Employee ID

carried in the many. In this example, the foreign key goes into the
Employee table.

M Employee

* Employee ID

* Office code

> Employee

* Employee ID
Office code (foreign key)

Designing Your Database

One to one In a one-to-one relationship, the foreign key can go into either
table. If it is mandatory on one side, but not on the other, it should
go on the mandatory side. In this example, the foreign key (Head
ID) is in the Department table because it is mandatory there.

1 1
Employee @ Department

* Employee ID * Employee ID * Department ID
* Department ID

Employee Department

* Employee ID * Department ID
Head ID (foreign key)

Many to many In a many-to-many relationship, a new table is created with two
foreign keys. The existing tables are now related to each other

through this new table.
Skill @ Employee
* Skill ID * Employee ID * Employee ID
* Skill ID
Skill > Expertise '4—— Employee
* Skill ID * Employee ID * Employee ID
* Skill ID

159

Using SQL Anywhere

16.3.5 Step 5: verify the design

Before you implement your design, you need to make sure it supports your
needs. Examine the activities you identified at the start of the design process and
make sure you can access all the data the activities require:

* Can you find a path to get all the information you need?
* Does the design meet your needs?

* Is all the required data available?

If you can answer yes to all the questions above, you are ready to implement
your design.

Final design
The final design of the example looks like this:

Skill
Office Expertise Department
Telephone Employee

16.4 Designing the database table properties

The database design specifies which tables you have and what columns each
table contains. This section describes how to specify each column’s properties.

For each column, you must decide the column name, the data type and size,
whether or not NULL values are allowed, and whether you want the database to
restrict the values allowed in the column.

160

Designing Your Database

16.4.1 Choosing column names

Column names can be any set of letters, numbers or symbols. However, if the
column name contains characters other than letters, numbers, or underscores, or
it does not begin with a letter, or it is a keyword (see "SQL Anywhere
Keywords" on page 1117), then whenever the column name is used, it must be
enclosed in double quotes.

16.4.2 Choosing data types for columns

The data types supported by SQL Anywhere include:

* Integer data types (int, integer, smallint).

¢ Decimal data types (decimal, numeric).

¢ Floating-point data types (float, double).

* Character data types (char, varchar, long varchar).
Binary data types (binary, long binary).
Date/time data types (date, time and timestamp).
¢ User-defined data types.

For a description of data types, see the section "Data types" on page 755.

The data type of the column affects the maximum size of the column. For
example, if you specify SMALLINT, a column can contain a maximum value of
32,767. If you specify INTEGER, the maximum value is 2,147,483,647. In the
case of CHAR, the maximum length of a value in the column must be specified.

The long binary data type can be used to hold information such as images (for
instance, stored as bitmaps) or word-processing documents in a database. These
types of information are commonly called binary large objects, or BLOBS.

For a complete description of each data type, see "Data types" on page 755.

NULL and NOT NULL

When the column value is mandatory for a record, you define the column as
being NOT NULL. Otherwise, the column is allowed to contain the NULL
value which represents no value. The default in SQL is to allow NULL values;
you should explicitly declare columns to be NOT NULL unless there is a good
reason to allow NULL values.

For a complete description of the NULL value and its use in comparisons see
"NULL value" on page 952 and "Search conditions" on page 803.

161

Using SQL Anywhere

16.4.3 Choosing constraints

Although the data type of a column restricts the values allowed in that column
(for example, only numbers or only dates), you may want to further restrict the
allowed values.

You can restrict the values of any column by specifying a CHECK constraint.
You can use any valid condition that could appear in a WHERE clause to restrict
the allowed values, although most CHECK constraints use either the BETWEEN
or IN conditions.

For more information about valid conditions, see "Search conditions" on page
803.

For more information about assigning constraints to tables and columns, see the
chapter "Ensuring Data Integrity" on page 183.
Example

The sample database has a table called department, which has columns named
dept_id, dept_name, and dept_head_id. Its definition is as follows:

Column Data Type Size Null/Not Null Constraint
dept_id integer not null None
dept_name char 40 not null None
dept_head_id integer not null None

Notice that "not null" is specified for each column. In this case, data for all
columns is required for every row in the table.

16.4.4 Choosing primary and foreign keys

162

The primary key

The primary key is the column or columns that uniquely identify the rows in the
table. If your tables are properly normalized, a primary key should be defined as
part of the database design.

The foreign key

A foreign key is a column or set of columns that contains primary key values
from another table. Foreign key relationships build one-to-one and one-to-many
relationships into your database. If your design is properly normalized, foreign
keys should be defined as part of your database design.

Chapter 17

Working With Database Objects

About this chapter

This chapter describes the mechanics of creating, altering, and modifying
database objects. The set of definitions of the database objects form the database
schema: you can think of the schema as the database without any data.

For each table in your design, you need to assign a data type to the columns, and
assign primary and foreign keys to impose the relational structure on the
database. In addition, SQL Anywhere allows you to build constraints directly
into the table definitions.

Creating and working with other database objects, such as indexes and views, is
also discussed in this chapter. Procedures and triggers are also database objects,
and are discussed in the chapter "Using Procedures, Triggers, and Batches" on
page 215.

Contents

» "Using SQL Central to work with database objects" on the next page.
» "Using ISQL to work with database objects" on the next page.

» "Working with databases" on page 165.

¢ "Working with tables" on page 169.

* "Working with views" on page 175.

* "Working with indexes" on page 180.

163

Using SQL Anywhere

17.1 Using SQL Central to work with database

objects

SQL Central is the primary tool for working with database objects in SQL
Anywhere. You can use SQL Anywhere to create, modify, and delete all kinds
of database objects, including tables, procedures, triggers, views, indexes, users
and groups, and so on.

This chapter is concerned with the SQL statements for working with database
objects. If you are using SQL Central, these SQL statements are generated for
you. The primary source of information about SQL Central is the SQL Central
online Help. In this chapter, only brief pointers are given for tasks you can carry
out using SQL Central. For an introduction to using SQL Central, see the
chapter "Managing Databases With SQL Central" on page 33.

17.2 Using ISQL to work with database objects

164

ISQL is a utility for entering SQL statements, supplied with SQL Anywhere. If
you are using ISQL to work with your database schema, we recommend that
instead of executing the SQL commands one at a time, you build up the set of
commands in an ISQL command file. This file can then be executed in ISQL to
build the database.

If you are using a tool other than ISQL, all the information in this chapter
concerning SQL statements still applies.

If you have not created your database using command files, you can create a
command file that would recreate your database by unloading the database. For
a description of the DBUNLOAD utility, see "SQL Anywhere Components"” on
page 679.

An ISQL command file is a text file with semicolons placed at the end of
commands (see "Command Files" on page 117) as shown below.

CREATE TABLE tl (...);
CREATE TABLE t2 (...);
CREATE INDEX 12 ON t2 (

An ISQL command file is usually given a name with extension SQL. To create
your database using a command file, you can either paste it into the ISQL
command window (for files with less than 500 lines), or execute the saved
command file by entering a command to read the file into the ISQL command
window. For example:

read makesdb

Working With Database Objects

will read the ISQL commands in the file makedb.sql.

Example

The command file used to create and load the sample database is shown in
"Sample Database Command File" on page 1101.

17.3 Working with databases

Some application design systems, such as Powersoft PowerBuilder, contain
facilities for creating databases. These tools construct SQL statements, which
are submitted to the SQL Anywhere engine, typically through its ODBC
interface. If you are using one of these tools, you do not need to construct SQL
statements to create tables, assign permissions, and so on.

This chapter describes the SQL statements supported by SQL Anywhere. You
can use these statements directly, if you are building your database from an
Interactive SQL tool, such as ISQL. Even if you are using an application design
tool, you may wish to use SQL statements to add features to the database if they
are not supported by the system’s database design tool.

17.3.1 Initializing a database

Initializing a database creates the root file for storing your database and the
system tables, which hold the schema definition as you build your database.

Database files are compatible among all versions of SQL Anywhere. A database
created from any operating system can be used from another operating system by
copying the database file(s). A database created with a standalone database
engine can be used with any SQL Anywhere network server as long as the server
is not an earlier release.

You create a database using the database initialization utility. Database
initialization is not controlled by SQL statements. Once the database is
initialized, you can connect to it and build the objects in the database using SQL
statements. If you are using SQL Central, the SQL statements are constructed
for you and you do not have to enter then yourself.

A full description of the initialization utility, and the options available when you
create a database, is given in "The database initialization utility" on page 710.
The initialization utility can be accessed in the following ways:

e In SQL Central, click the Database Utilities folder in the left panel, then

double-click Create Database to start the Create Database Wizard, which leads
you through the process.

165

Using SQL Anywhere

* For Windows 3.x and OS/2, use the ISQL Database Tools window. To open
this window, select the Database Tools menu item from the Window menu.
Select Create Database from the Tools list, and enter the path and name of
the file in which you wish to store the database in the Database File field. It
is recommended that you give the database file the standard filename
extension of .db. Press the Create button. This displays another dialog box
for specifying options such as page size and collation sequence.

Use the DBINIT command (DBINITW for Windows). For a full description
of the DBINIT command, see "The database initialization utility" on page 710.

For example, the following command will create a database called
company.db:

dbinit company.db

Command line parameters allow different options for the database. For
example, the following command creates a database with a 4K page size:

dbinit -p 4096 company.db

Use the ISQL DBTOOL statement. All of the database utility programs are
available from within ISQL using the DBTOOL command. For example, the
following command creates a database called company.db:

DBTOOL CREATE DATABASE ’'company.db’

The following command creates a database with 4K pages:

DBTOOL CREATE DATABASE ’‘company.db’ PAGE SIZE 4096

17.3.2 Adding database files

166

When a database is initialized, it is composed of one file. This first database file
is called the root file. All database objects and all data are placed in the root file.
For many databases, it is convenient to keep the database as a single file. This
section is intended only for users of large databases.

Each SQL Anywhere database file has a maximum size of 2 GB, so you may
wish to divide large databases among more than one file. (On Windows NT, this
limitation is removed, and files can be up to a Terabyte). You create a new
database file, or dbspace, using the CREATE DBSPACE statement. A new
dbspace may be on the same disk drive as the root file or on another disk drive.
You must have DBA authority to create new database files.

When created, a new dbspace has no contents. When you create a new table you
can place it in the new dbspace by using an IN clause in the CREATE TABLE
statement. For information on creating tables, see "Creating tables" on page 169.
If no IN clause is used, the table is placed in the root file. Each table must be

Working With Database Objects

contained in a single dbspace, and SQL Anywhere has a maximum of twelve
dbspaces per database. By default, indexes are placed in the same dbspace as
their table, but they can be placed in a separate dbspace by supplying an IN
clause.

Example

The following command creates a new dbspace called library in the file
library.db in the same directory as the root file:

CREATE DBSPACE library
AS ‘library.db’

To create a table and place it in the library dbspace, you can use the following
command:

CREATE TABLE Library_Books (

title char (100),
author char (50),
isbn char (30)

) IN library

If you wish to split existing database objects among several dbspaces, you need
to unload your database and modify the command file for rebuilding the
database by adding IN clauses to specify the dbspace for each table you do not
wish to place in the root file.

Creating a dbspace in SQL Central

To create a dbspace in SQL Central:

Connect to the database.

Click the DB Spaces folder for that database.

Double-click Add DB Space in the right panel.

Enter the dbspace name and filename, and click OK to create the dbspace.

Eali i S e

17.3.3 Preallocating space for database files

SQL Anywhere automatically takes new disk space for database files as needed.
Unless you are working with a large database with a high rate of inserts and
deletes, you do not need to worry about explicitly allocating spaced for database
files. SQL Anywhere does allow preallocation of disk space for database files or
for transaction logs for those cases where rapidly changing database files could
lead to excessive file fragmentation on the disk, and possible performance
problems.

167

Using SQL Anywhere

You can preallocate disk space for a database file or for the transaction log using
the ALTER DBSPACE statement. For more information on this statement, see
"ALTER DBSPACE Statement" on page 813.

For example, the following statement adds 200 pages to the database file with
dbspace name library. (The database page size is fixed when the database is
created.)

ALTER DBSPACE library
ADD 200

Running a disk defragmentation utility after preallocating disk space helps
ensure that the database file is not fragmented over many disjoint areas of the
disk drive. Performance can suffer if there is excessive fragmentation of
database files.

Preallocating disk space in SQL Central

To preallocate disk space for a dbspace in SQL Central:

b o e

Connect to the database.

Click the DB Spaces folder for that database.

Double-click the dbspace in the right panel.

Click Add Pages, and enter the number of database pages to preallocate,
then click OK.

17.3.4 Erasing a database

Erasing a database deletes all tables and data from disk, including the transaction
log that records alterations to the database.

168

All SQL Anywhere databases are marked as read-only to prevent accidental
modification or deletion of the database files.

You can erase database files using the Erase utility. For a full description of the
Erase utility, see "The Erase utility" on page 703. You can access the Erase
utility using any of the following methods:

Using SQL Central. Click the Database Utilities folder, and double-click
Erase Database to display the Erase Database Wizard, which leads you
through the process.

Using the ISQL Database Tools window. To open this window, select the
Database Tools menu item from the Window menu. Select Erase Database
or Write File from the Tools list, and enter the name of the database file in
the Database File field. The database is erased when you press the Erase
button.

Working With Database Objects

* Using the DBERASE command-line utility (DBERASEW for Windows). The
following command erases the database company.db and its transaction log:

dberase company.db

You will be asked to confirm that you really want to erase the files. To erase
the files, type y and press Enter.

» Using the DBTOOL statement. All the database utility programs are available
from within ISQL using DBTOOL. For example, the following command
erases the database company.db and its transaction log:

DBTOOL DROP DATABASE company.db

The Erase utility can also be used to erase write files and log files. For a
description of write files, see "The write file utility" on page 741.

17.4 Working with tables

When the database is initialized, the only tables in the database are the system
tables which hold the database schema.

This section describes how to create, alter, and delete tables from a database.
The examples can be executed in ISQL, but the SQL statements are independent
of the administration tool you are using.

We recommend that you create command files containing the CREATE TABLE
and ALTER TABLE statements that define the tables in your database.

17.4.1 Creating tables

Creating tables in SQL Central

To create a table in SQL Central you first create an empty table, and then add
columns, specify primary keys and constraints, and so on:

To create an empty table:

Connect to the database.

Click the Tables folder for that database.

Double-click Add Table in the right panel.

Fill out the dialog box, and click OK to create an empty table.

bl S

To add a column to a table:

169

Using SQL Anywhere

170

1. Double-click the new table.

2. Double-click the Columns folder.

3. Double-click Add Column.

4. Fill out the dialog box, and click OK to the column.
Creating tables in ISQL

There are two ways to create new tables using ISQL. The easiest way is to type
a CREATE TABLE STATEMENT in ISQL. However, we recommend that you
create a command file that contains the CREATE TABLE commands for your
database. This allows you easily to recreate your database and provides some
documentation of the structure of your database. This section describes how to
create tables interactively using ISQL.

The examples in this section use the sample database. To try the examples, run
ISQL and connect to the sademo.db database with userid dba and password sql.
For information on connecting to a database from ISQL, see "Connecting from
the SQL Anywhere utilities" on page 132.

You can create tables from other tools in addition to ISQL. The SQL statements
described here are independent of the tool you are using.

The following command creates a new table to describe qualifications of
employees within a company. The table has columns to hold an identifying
number, a name, and a type (say "technical" or "administrative") for each skill.

CREATE TABLE skill (
skill_id INTEGER NOT NULL,
skill_name CHAR(20) NOT NULL,
skill_type CHAR(20) NOT NULL
)

You can execute this command by typing it into the ISQL command window and
pressing the execute key (F9). Note the following:

1. Each column has a data type. The skill_id is an integer (like 101), the
skill_name is a character string containing up to 20 characters, and so on.

2. All columns are mandatory as indicated by the phrase NOT NULL after
their data types.

Before creating the table, SQL Anywhere makes all previous changes to the
database permanent by internally executing the COMMIT statement. There is
also a COMMIT after the table is created.

For a full description of the CREATE TABLE statement, see the chapter
"Watcom-SQL Language Reference" on page 751. For information about
building constraints into table definitions using CREATE TABLE, see the
chapter "Ensuring Data Integrity" on page 183.

Working With Database Objects

17.4.2 Altering tables

This section describes how to change the structure of a table using the ALTER
TABLE statement.

Examples

The following command adds a column to the skill table to allow space for an
optional description of the skill:

ALTER TABLE skill
ADD skill_description CHAR(254)

This statement adds a column called skill_description that holds up to a few
sentences describing the skill.

Column attributes can also be modified with the ALTER TABLE statement.
The following statement shortens the skill_description column of the sample
database from a maximum of 254 characters to a maximum of 80:

ALTER TABLE skill
MODIFY skill_description CHAR(80)

Any current entries that are longer than 80 characters are trimmed to conform to
the 80-character limit, and a warning is displayed.

The following statement changes the name of the skill_type column to
classification:

ALTER TABLE skill
RENAME skill_type TO classification

The following statement deletes the classification column.

ALTER TABLE skill
DELETE classification

As a final example, the following statement changes the name of the entire table:

ALTER TABLE skill
RENAME qualification

These examples show how to change the structure of the database. The ALTER
TABLE statement can change just about anything pertaining to a table—foreign
keys can be added or deleted, columns can be changed from one type to another,
and so on.

For a complete description of the ALTER TABLE command, see "ALTER
TABLE Statement" on page 820. For information about building constraints
into table definitions using ALTER TABLE, see the chapter "Ensuring Data
Integrity" on page 183.

17

Using SQL Anywhere

Altering tables in SQL Central

The property sheets for tables and columns display all the table or column
attributes. You can alter a table definition in SQL Central by displaying the
property sheet for the table or column you wish to change, altering the property,
and clicking OK to commit the change.

17.4.3 Deleting tables

The following DROP TABLE command deletes all the records in the Absence
table and then removes the definition of the Absence table from the database.

DROP TABLE skill

Like the CREATE command, the DROP command automatically executes a
COMMIT statement before and after dropping the table. This makes all changes
to the database since the last COMMIT or ROLLBACK permanent.

For a full description of the DROP statement, see the chapter "Watcom-SQL
Language Reference" on page 751.

Dropping a table in SQL Central

To drop a table in SQL Central:

1. Connect to the database.

2. Click the Tables folder for that database.

3. Right-click the table you wish to delete, and select Delete from the popup
menu.

17.4.4 Creating primary and foreign keys

The CREATE TABLE and ALTER TABLE statements allow many attributes of
tables to be set, including column constraints and checks. This section shows
how to set table attributes using the primary and foreign keys as an example.

Creating a primary key

The following statement creates the same skill table as before, except that a
primary key is added:

172

Working With Database Objects

CREATE TABLE skill (
skill_id INTEGER NOT NULL,
skill_name CHAR(20) NOT NULL,
skill_type CHAR(20) NOT NULL,
primary key(skill_id)
)

The primary key values must be unique for each row in the table which, in this
case, means that you cannot have more than one row with a given skill_id. Each
row in a table is uniquely identified by its primary key.

Columns in the primary key are not allowed to contain the NULL value. You
must specify NOT NULL on the column in the primary key.

Creating a primary key in SQL Central

One way to create a primary key in SQL Central is as follows:

1. Connect to the database.

2. Click the Tables folder for that database.

3. Right-click the table you wish to modify, and select Properties from the
popup menu, to display its property sheet.

4. Click the Columns tab, and add columns to the primary key, or remove
them from the primary key.

For more information, see the SQL Central online Help.

Creating foreign keys

You can create a table named emp_skill, which holds a description of each
employee’s skill level for each skill in which they are qualified, as follows:

CREATE TABLE emp_skill(

emp_id INTEGER NOT NULL,
skill_id INTEGER NOT NULL,
"skill level" INTEGER NOT NULL,

PRIMARY KEY(emp_id, skill_id),
FOREIGN KEY REFERENCES employee,
FOREIGN KEY REFERENCES skill)

The emp_skill table definition has a primary key that consists of two columns:
the emp_id column and the skill_id column. An employee may have more than
one skill, and so appear in several rows, and several employees may possess a
given skill, so that the skill_id may appear several times. However, there may
be no more than one entry for a given employee’s level at a particular skill:

The emp_skill table also has two foreign keys. The foreign key entries indicate
that the emp_id column must contain a valid employee number from the
employee, and that the skill_id must contain a valid entry from the skill table.

173

Using SQL Anywhere

The skill level, contains a space, and is surrounded by quotation marks ("double
quotes"). SQL Anywhere allows column names and table names to contain any
characters, but the names must be enclosed in quotation marks if any characters
other than letters, digits or underscore are used, or if the name does not begin
with a letter, or if the name is a keyword.

Remember, in SQL:

¢ Single quotes (apostrophes) are used to indicate database values (for example,
'SMITH’, ’'100 Apple St.’, ’1988-1-1").

¢ Double quotes (quotation marks) are used to indicate table or column names
(for example, "'skill level"', "emp_id", "skill_type"').

To include a single quote inside a string, use two single quotes:

'’'Plankton’’ said the cat’

A table can only have one primary key defined, but it may have as many foreign
keys as necessary.

For more information about using primary and foreign keys, see the chapter
"Ensuring Data Integrity" on page 183.

Creating a foreign key in SQL Central

One way to create a foreign key in SQL Central is as follows:

Connect to the database.

Click the Tables folder for that database.

Click the the primary key table, and drag it to the foreign key table.
When the primary key table is dropped on the foreign key table, the
Foreign Key Wizard is displayed, which leads you through the process of
creating the foreign key.

S

For more information, see the SQL Central online Help.

17.4.5 Table information in the system tables

174

All the information about tables in a database is held in the system tables. The
information is distributed among several tables. For more information, see
"SQL Anywhere System Tables" on page 1131.

You can use SQL Central or ISQL to browse the information in these tables.
Type the following command in the ISQL command window to see all the
columns in the SYS.SYSTABLE table:

Working With Database Objects

SELECT *
FROM SYS.SYSTABLE

Viewing system tables in SQL Central
To display the system tables in SQL Central:

1. Connect to the database.
Right-click the database, and select Show System Objects from the popup
menu.

3. When you view the database tables or views with Show